Каротин и каротиноиды: их виды, свойства, значение и применение. Сияющий и здоровый оттенок кожи без косметики и солярия: каротиноиды

Наряду с зелеными пигментами в хлоропластах и хроматофорах содержатся пигменты, относящиеся к группе каротиноидов. Кароти ноиды - это желтые и оранжевые пигменты алифатического строе­ния, производные изопрена. Каротиноиды содержатся во всех выс­ших растениях и у многих микроорганизмов. Это самые распростра­ненные пигменты с разнообразными функциями. Каротиноиды, содержащие кислород, получили название ксантофиллов. Основными представителями каротиноидов у высших растений являются два пиг­мента -β-каротин (оранжевый) С 40 Н 56 и ксантофилл (желтый) С 40 Н 56 О 2 . Каротин состоит из 8 изопреновых остатков. При разрыве углеродной цепочки пополам и образовании на конце спирто­вой группы, каротин превращается в 2 молекулы витамина А. Обра­щает на себя внимание сходство в структуре фитола - спирта, входя­щего в состав хлорофилла, и углеродной цепочки, соединяющей циклогексениловые кольца каротина. Предполагается, что фитол возни­кает как продукт гидрирования этой части молекулы каротиноидов. Каротиноиды имеют большое количество конъюгированных двойных связей, поэтому они способны к окислительно-восстановительным реакциям. Поглощение света каротиноидами, а, следовательно, их окраска также обусловлены наличием конъюгированных двойных связей, β-каротин имеет два максимума поглощения, соответствую­щие длинам волн 482 и 452 нм. Красные лучи, поглощаемые хлорофиллами, каротиноиды не поглощают. Каротиноиды, в отличие от хлорофилла, не обладают способностью к флюоресценции. Подобно хлорофиллу каротиноиды в хлоропластах вступают во взаимодейст­вие с белками.

Физиологическая роль каротиноидов. Уже тот факт, что кароти­ноиды всегда присутствуют в хлоропластах, позволяет считать, что они принимают участие в процессе фотосинтеза. Однако не отмече­но ни одного случая, когда в отсутствии хлорофилла этот процесс осуществляется, поэтому считают, что роль каротиноидов вспомога­тельная.

В настоящее время предполагается, что каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют ис­пользованию лучей, которые хлорофиллом не поглощаются.

Физиологическая роль каротиноидов не ограничивается их уча­стием в передаче энергии на молекулы хлорофилла. На свету происходит вза­имопревращение ксантофиллов (виолоксантин превращается в зеаксантин), что сопровождается выделением кислорода. Спектр действия этой реакции совпадает со спектром поглощения хлорофилла, что позволило высказать предположение об ее участии в процессе фото­синтеза.

Имеются данные, что каротиноиды выполняют защитную функ­цию, предохраняя различные органические вещества, в первую оче­редь молекулы хлорофилла, от разрушения на свету в процессе фото­окисления. Опыты, проведенные на мутантах кукурузы и подсолнеч­ника, показали, что они содержат протохлорофиллид (темновой пред­шественник хлорофилла), который на свету переходит в хлоро­филл а , но разрушается. Последнее связано с отсутствием способно­сти исследованных мутантов к образованию каротиноидов.

Ряд исследователей указывает, что каротиноиды играют опреде­ленную роль в половом процессе у растений. Известно, что в период цветения высших растений содержание каротиноидов в листьях уменьшается. Одновременно оно заметно растет в пыльниках, а так­же в лепестках цветков. Микроспорогенез тесно связан с метаболизмом каротиноидов. Незрелые пыльце­вые зерна имеют белую окраску, а созревшая пыльца - желто-оран­жевую. В половых клетках водорослей наблюдается дифференциро­ванное распределение пигментов. Мужские гаметы имеют желтую окраску и содержат каротиноиды. Женские гаметы содержат хлоро­филл. Высказывается мнение, что именно каротин обусловливает под­вижность сперматозоидов. Материнские клет­ки водоросли хламидомонады образуют половые клетки (гаметы) первоначально без жгутиков, в этот период они еще не могут пере­двигаться в воде. Жгутики образуются только после освещения гамет длинноволновыми лучами, которые улавливаются особым каротиноидом - кроцином.

Образование каротиноидов. Синтез каротиноидов не требует све­та. При формировании листьев каротиноиды образуются и накапли­ваются в пластидах еще в тот период, когда зачаток листа защищен в почке от действия света. При начале освещения образование хлорофилла в этиолированных проростках сопровождается временным падением содержания каротиноидов. Однако затем содержание каро­тиноидов восстанавливается и даже повышается с увеличением интен­сивности освещения. Показана тесная зависимость образования каро­тиноидов от азотного обмена. Установлено, что между содержанием белка и каротиноидов имеется прямая коррелятивная связь. Потеря белка и каротиноидов в срезанных листьях идет параллельно. Обра­зование каротиноидов зависит от источника азотного питания. Более благоприятные результаты по накоплению каротиноидов получены при выращивании растений на нитратном фоне по сравнению с амми­ачным. Недостаток серы резко уменьшает содержание каротиноидов. Большое значение имеет соотношение Са в питательной среде. Относительное увеличение содержания Са приводит к усиленному на­коплению каротиноидов по сравнению с хлорофиллом. Противопо­ложное влияние оказывает увеличение содержания магния.


Никитюк В. Г.

Каротиноиды и их значение в живой природе и для человека

Государственный научный центр лекарственных средств, г. Харьков

Интенсивные методы хозяйствования, получение продуктов длительного хранения, их глубокая переработка приводят к истощению содержания в них витаминов и провитаминов (в частности, каротиноидов). Это, вместе с воздействием неблагоприятных экологических факторов и катастроф, вызывает их недостаток в организме и, как следствие, рост целых групп заболеваний.

Учитывая неоценимую роль каротиноидов для протекания нормальных физиологических процессов, актуальной задачей современной фармацевтической науки является создание профилактических и лекарственных средств на их основе. Мировым лидером в этой области выступает швейцарская фирма «Hoffmann La-Roche», препараты и пищевые добавки которой можно найти и на отечественном рынке.

Физико-химические свойства каротиноидов

По химической природе каротиноиды относятся к огромному классу терпеноидов, включающих также эфирные масла, фитогормоны, стероиды, сердечные гликозиды, жирорастворимые витамины, млечный сок. Их углеводородная структура состоит из цепи двух или более изопренов (С5-углеводородов). Каротиноиды относятся к тетратерпенам; они состоят из длинных ветвящихся углеводородных цепей, содержащих несколько сопряженных двойных связей, заканчивающихся на одном (g-каротин) или обоих концах (b-каротин) кольцевой циклической структурой - иононовым кольцом.

Длинная цепь сопряженных двойных связей образует хромофор всех каротиноидов, что позволяет отнести их к природным пигментам. Человеческому глазу каротиноиды с 7–15 конъюгированными двойными связями видятся в цвете от желтого до красного. Их хромофорные p-электронные системы находятся также под влиянием других дополнительных двойных связей и различных функциональных групп (например, карбонильной, эпокси-группы и др.), которые также оказывают влияние на поглощение волн света определенных длин и, как следствие, на цвет молекул.

В зависимости от степени поглощения каротиноиды разделяются на 2 группы: каротины и ксантофилы. Все незамещенные каротиноиды - каротины. Они не содержат атомов кислорода, являются чистыми углеводородами и обычно имеют оранжевый цвет. Наиболее известный представитель этой группы - b-каротин. Каротиноиды, окрашенные в цвета от желтого до красного характеризуются наличием кислородсодержащих функциональных групп и называются ксантофилами. Продукты распада дифференцируются как апо-, секо- и норкаротиноиды.

Из-за многочисленных двойных связей, обычно циклического окончания молекул и наличия ассимметричных атомов углерода каротиноиды имеют разнообразные конфигурации и стереоизомеры с различными химическими и физическими свойствами. Большинство каротиноидов имеют цис- и трансгеометрические изомеры. Атом углерода с 4 различными заместителями обусловливает возможность оптических R- или S-изомеров. Эти различия между молекулами одной и той же формулы оказывают заметное влияние на физические свойства и на эффективность каротиноидов как пигментов.

К общим свойствам каротиноидов можно отнести их нерастворимость в воде и хорошую растворимость во многих органических растворителях (хлороформе, бензоле, гексане, петролейном эфире, четыреххлористом водороде и др.). Гидроксилсодержащие каротиноиды лучше растворяются в спиртах (метанол, этанол). Растворы каротиноидов в органических растворителях при спектрофотометрических исследованиях дают характеристические полосы поглощения в основном в видимой области спектра, а стереоизомеры показывают их также и в ультрафиолетовой области. Это один из наиболее точных показателей, используемых при идентификации этих веществ.

Характерной является также особенность каротиноидов избирательно абсорбироваться на минеральных и некоторых органических абсорбентах, что позволяет разделять их при помощи методов хроматографирования.

Для отдельных каротиноидов характерны некоторые специфические реакции, в том числе цветные.

Следует учитывать, что каротиноиды в чистом виде характеризуются высокой лабильностью - они весьма чувствительны к воздействию солнечного света, кислорода воздуха, нагреванию, воздействию кислот и щелочей. Под воздействием этих неблагоприятных факторов они подвергаются окислению и разрушению. В тоже время, входя в состав различных комплексов (например, протеиновых), они проявляют намного большую стабильность.

Распространение каротиноидов в природе

Впервые выделенные еще в начале 19 века из желтой репы и моркови, каротиноиды, как оказалось, присутствуют в клетках и тканях у представителей всех 7 царств живой природы: от низших бактерий до позвоночных животных, наравне с черно-коричневыми меланинами, они являются самыми распространенными пигментами в природе: за год их синтезируется около 100 млн тонн (более 3 тонн в секунду). При этом на сегодняшний день обнаружено свыше 600 различных каротиноидов и это количество не является предельным.

Распространение и разнообразие каротиноидов в природе обуславливается как способностью организмов к их биосинтезу, так и способностью их абсорбировать и метаболизировать. Каротиноидные композиции у различных групп и видов живых организмов не только отличаются по количественному содержанию, но и различны по качественному составу. Человек, являясь уникальным творением природы, способен аккумулировать в значительных количествах и в одинаковой степени как каротиноиды, так и ксантофилы.

Следует отметить, что в природе каротиноиды могут находиться в различных состояниях: в свободном виде они чаще встречаются в пластидах растений, мышечной ткани рыб, яйцах птиц, в виде эфиров жирных кислот - в хроматофорах и эпидермальных структурах растений, в форме каротин-протеинов - в эпидермальных тканях животных и т. д.

Животные (в том числе и человек) не могут синтезировать каротиноиды de novo, их поступление зависит только от источников питания. Усвоение каротиноидов, как и других липидов, происходит в дуоденальной области тонкого кишечника. Под влиянием желудочно-кишечной среды (например кислотности желудочного сока), наличия специфических рецепторов протеинов каротиноиды могут разрушаться окислителями или энзимами или метаболизировать, как например b-каротин в витамин А в слизистой. Провитаминные свойства b-каротина и его окислительное преобразование в витамин А являются общими для всех животных. Согласно принятой гипотезе b-каротин превращается в витамин А в слизистой кишечника под воздействием фермента каротиндиоксигеназы. Молекула b-каротина, которая теоретически должна образовывать 2 молекулы витамина А, уменьшается с одного конца цепи в результате последовательного окисления до ретиналя (С20-соединения) и образует одну молекулу витамина А. Другие каротиноиды также могут проявлять А-провитаминную активность.

Усвоение каротиноидов

Установлено, что содержащиеся в продуктах питания каротиноиды далеко не полностью усваиваются организмом. Находясь внутри неповрежденных клеток растительных продуктов, каротиноды ресорбируются в кровь обычно в очень малой степени. Значительно лучше происходит усвоение из мелко измельченных и предварительно обработанных продуктов, в которых клеточные мембраны разрушены.

Кроме того, важным фактором для усвоения каротиноидов организмом является наличие жировой среды. Еще в 1941 году было установлено, что количество каротина, усвояемого организмом из сырой моркови при диете, лишенной жиров, не превышает 1%. При тех же условиях из вареной моркови усваивается 19% каротина. После добавления растительного масла усвоение каротина увеличивается до 25%.

Значение и функции каротиноидов

Наблюдая широкое распространение каротиноидов в растительном и животном мире, их большое разнообразие, тот факт, что на протяжении всей эволюции растения производят, а животные и человек поглощают каротиноиды, содержащиеся в продуктах их ежедневного рациона, модифицируют и аккумулируют их специфическим образом, неизбежно возникает вопрос об их функциональном назначении. Хотя многие аспекты физиологических функций каротиноидов остаются невыясненными до конца, можно с уверенностью утверждать, что они играют важную роль в различных физиологических процессах, без которых жизнь в существующей форме была бы невозможна.

Для растений фундаментальное значение имеет функция каротиноидов, связанная с процессом фотосинтеза, который стал основой всей жизни на земле, когда геохимические источники энергии на нашей планете были исчерпаны (после глобального энергетического кризиса, произошедшего на нашей планете около 5 миллиардов лет назад). Растения абсорбируют энергию солнечного света и благодаря этому синтезируют из углекислого газа и воды органические вещества, которые и являются основой как животной, так и человеческой пищевой цепи. В процессе фотосинтеза производится кислород, образующий кислородную атмосферу, в которой большинство органических молекул могли быстро разрушаться, если бы не были защищены от подобных побочных эффектов этого процесса (также, как и от других неблагоприятных факторов). В предотвращении негативных проявлений этих процессов (например, индуцирование энергии и защита органических молекул от разрушения окислением) ключевая роль принадлежит каротиноидам.

Как светопоглотители каротиноиды разделяют с хлорофиллом ключевую роль в энергетическом метаболизме высших растений. Поглощая свет, они трансформируют захваченную световую энергию в реакционные центры пигментов, где она преобразуется в электрическую, а затем и в химическую в форме АТФ, которая уже пригодна для синтеза различных соединений.

Не менее важна мембраностабилизирующая функция каротиноидов, что исключительно важно для жизни в кислородной атмосфере.

Каротиноиды вовлекаются в различные защитные механизмы:

Одна из важнейших функций каротиноидов - А-провитаминная активность. Животные и человек не способны синтезировать витамин А, который является незаменимым для зрения, роста, репродукции, защиты от различных бактериальных и грибковых заболеваний, нормального функционирования кожи и слизистых. Витамин А не образуется и в растительных тканях, и может быть получен только путем преобразования провитамин-А активных каротиноидов (прежде всего b-каротина, а также a-каротина, криптоксантина, 3,4-дигидро-b-каротина, астаксантина, кантаксантина и др.).

Представляет интерес влияние каротиноидов на эндокринную систему, особенно это касается полового развития и созревания, оплодотворения, прохождения репродуктивных процессов.

Еще одна важная функция - способность образовывать комплексы с протеинами. Известно, что маленькие молекулы (так называемые аллостерические эффекторы) изменяют агрегационное состояние протеинов, тем самым стабилизируя их протеиновую и энзимовую активность. Эта способность также обуславливает изменения проницаемости мембран.

Каротиноиды могут косвенно поддерживать водный баланс организма, способствуют работе обонятельных рецепторов и хеморецепторов.

Считается, что каротиноиды (ксантофилы) используются как запас кислорода в нейрональной дыхательной цепочке и важны поэтому в кислородных клетках и тканях.

Учитывая существующую взаимосвязь между высокой каротиноидной и кальциевой концентрацией, в особенности в компонентах митохондрий с каротиноидсодержащими мембранами, можно заключить, что эти липохромы играют большую роль в транспорте кальция через мембраны.

Установлена иммуностимулирующая роль каротиноидов. Например, обнаружено: рыбы с высоким содержанием каротиноидов были значительно более устойчивы к инфекционным и грибковым заболеваниям; цыплята - устойчивы к энцефалопатии и т. д. Каротиноиды увеличивают цитостатическую активность клеток-киллеров, замедляют рост опухоли и ускоряют ранозаживление.

Они также проявляют аппетитстимулирующую активность (и физиологически, и этиологически).

Весьма важной, проявляющейся внешне, функцией каротиноидов является их способность обеспечивать яркую окраску организмов, которая может выполнять сигнальную функцию, нести информацию:

Перечень основных установленных функций каротиноидов представлен нами в таблице.

Основные функции каротиноидов
Для растений Для животных
Светопоглотитель или вспомогательный антенный пигмент А-провитаминная активность
Проводники энергии света Оказывают влияние на работу эндокринной системы
Защита от неблагоприятных факторов внешней среды Предохраняет от неблагоприятных факторов внешней среды
Мембраностабилизирующая функция
Сигнальная функция при окрашивании Стабилизация протеинов

Запас кислорода в нейрональной дыхательной цепочке

Способствуют транспорту кальция через мембраны

Иммуностимулирующая роль

Сигнальная функция при окрашивании

Отмечено, что продукты разложения каротиноидов также обладают специфическими физиологическими функциями: например, участвуют в синтезе фитогормонов.

Природные источники каротиноидов и их использование

Природные источники каротинодов очень многообразны: травы и зеленые листья, пыльца цветковых растений, лепестки цветов, водоросли, корни, зерна и плоды растений, а также различные микроорганизмы, некоторые виды рыб. Многие из них могут быть использованы, а некоторые уже довольно широко используются, для получения различных пищевых добавок и препаратов с А-витаминной активностью или другими направленностями действия. В странах с тропическим климатом источником получения каротиноидсодержащих продуктов служат красное пальмовое масло и клубни батата. Довольно богаты каротиноидами плоды цитрусовых, абрикосы, хурма.

Из источников, присущих средним широтам, в том числе и климатическим зонам Украины, можно выделить плоды моркови, тыквы, томатов, сладкого перца, облепихи, шиповника, рябины. При этом ряд каротиноидсодержащих препаратов на основе природного растительного сырья выпускается отечественной фармацевтической промышленностью.

Значительный интерес для создания профилактических и лекарственных средств на основе природного сырья, богатого каротиноидами, представляют плоды шиповника (в частности вида Rosa canina). Отечественной фармацевтической промышленностью выпускается масло шиповника (содержит не менее 60 мг% каротиноидов). Однако его источником служат семена, а богатая каротиноидами мякоть плодов используется только для получения сиропа, содержащего комплекс гидрофильных веществ и богатого аскорбиновой кислотой. Липофильные же вещества, к которым относятся и каротиноиды, остаются в неиспользованном отходе. В связи с этим представляется целесообразным комплексный подход к переработке этого сырья.

Ценным каротиноидсодержащим препаратом является масло из плодов облепихи (их содержание составляет не менее 180 мг%). Однако, как и масло из семян шиповника, оно легко подвергается окислению при контакте с кислородом воздуха, а разлитое во флаконы не всегда удобно для дозирования.

Плоды рябины, и прежде всего рябины черноплодной (Aronia melanocarpa), как богатый каротиноидами природный сырьевой источник, используются незначительно.

Определенные сложности в разработке лекарственных форм с каротиноидами вызывает их лабильность - под воздействие неблагоприятных внешних факторов (кислород воздуха, солнечный свет, перепады температур, химические раегенты) они легко окисляются и разрушаются. Создание каротиноидсодержащих препаратов в такой современной лекарственной форме, как желатиновые капсулы, позволяет свести к минимуму эту проблему. Данная лекарственная форма удобна и с учетом той особенности каротиноидов, что они относятся к липофильным соединениям, т. е. растворимы в маслах, проявляя в масляных растворах наибольшую фармакотерапевтическую активность.

В обзорной статье В.Г.Ладыгина и Г.Н.Ширшиковой изложены современные представления о функциях каротиноидов - желтых, красных и оранжевых пигментов - у растений. Каротиноиды играют очень важную роль в работе молекулярной машины фотосинтеза. Они выполняют три основные функции: фотозащитную (защищают хлорофилл и другие уязвимые компоненты фотосистем от светового «перевозбуждения»), светособирающую (что позволяет растениям использовать энергию света в синей области спектра - задача, с которой хлорофилл не может справиться без помощи каротиноидов) и структурную (служат необходимыми структурными элементами, «кирпчиками» фотосистем).

Каротиноиды - широко распространенный класс пигментов, встречающийся у бактерий, одноклеточных эукариот, грибов, растений и животных. В отличие от ряда других пигментов, таких как гем (окрашивающий кровь и мышцы млекопитающих в красный цвет) или хлорофилл (ответственный за зеленую окраску растений), молекулы каротиноидов не содержат металлов. Они состоят только из углерода, водорода и кислорода, и их способность «работать» с квантами света определяется системой сопряженных двойных связей между атомами углерода, выстроенными в цепочку. Сопряженными называются двойные связи, разделенные одной простой связью.

Каротиноиды поглощают свет с длиной волны 280–550 нм (это зеленая, синяя, фиолетовая, ультрафиолетовая области спектра). Чем больше в молекуле сопряженных двойных связей, тем больше длина волны поглощаемого света. Соответственно меняется и окраска пигмента. Каротиноиды, имеющие 3–5 сопряженных двойных связей, бесцветны, они поглощают свет в ультрафиолетовой области. Дзета-каротин с семью связями имеет желтую окраску, нейроспорин с девятью связями - оранженвую, ликопин с 11 связями - оранжево-красную.

Функции каротиноидов в живой природе не ограничиваются работой со светом, порой они играют важную роль в обмене веществ (вспомним, например, витамин А - производное бета-каротина). И все же главные их функции (будь то в органах зрения животных или в хлоропластах - органеллах фотосинтеза растений) неразрывно связаны со светом. В статье Ладыгина и Ширшиковой рассматривается роль каротиноидов в хлоропластах - органеллах растительной клетки, которые ведут свое происхождение от симбиотических цианобактерий. Основная функция хлоропластов - фотосинтез, то есть производство органики из углекислого газа за счет энергии солнечного света. В мембранах хлоропластов расположены белково-пигментные комплексы - фотосистемы I и II, в состав которых входят разнообразные белки, а также пигменты - хлорофиллы и каротиноиды.

Хлорофилл - основной фотосинтетический пигмент - сам по себе способен поглощать и использовать свет только в красной области спектра (650–710 нм). Каротиноиды поглощают сине-зеленый свет и передают его энергию хлорофиллам. Эта функция каротиноидов - светособирающая - особенно важна для водорослей, поскольку сине-зеленый свет проникает в толщу воды гораздо глубже, чем красный.

Вторая функция каротиноидов в хлоропластах - светозащитная . Они защищают фотосистемы от световых «перегрузок», которые могут приводить к сверхвозбуждению и сбоям в работе фотосистем. Каротиноиды служат своего рода «аварийными клапанами», позволяющими сбросить избыточную энергию, перевести ее в тепло. Каротиноиды справляются с этой задачей несколькими разными способами: просто «фильтруя» поступающий свет, забирая на себя избыточную световую энергию, или снимая энергию с перевозбужденного хлорофилла. Каротиноиды могут также «тушить» активные формы кислорода, то есть служат антиоксидантами.

Одним из способов, при помощи которых каротиноиды «сбрасывают» лишнюю энергию при избыточном освещении, являются циклические химические реакции, в ходе которых одни каротиноиды превращаются в другие. Самая распространенная из этих реакций получила название виолаксантинового цикла. На сильном свету каротиноид виолаксантин превращается в зеаксантин, при этом выделяется кислород. Когда освещенность снижается, зеаксантин превращается обратно в виолаксантин, при этом кислород поглощается. Обе реакции - и прямая, и обратная - катализируются ферментами, гены которых расположены в хромосоме хлоропласта, а не в центральном (ядерном) геноме растительной клетки.

Третья функция каротиноидов - структурная . Каротиноиды - обязательные структурные компоненты фотосинтетических мембран хлоропластов. Экспериментально показано, что без каротиноидов фотосистемы становятся нестабильными. Молекулы каротиноидов занимают строго определенные положения в фотосистемах, и без них вся конструкция попросту разваливается.

Авторы отмечают, что в последние годы о каротиноидах стало известно много нового, однако целый ряд подробностей еще предстоит выяснить. В частности, не до конца еще понятно эволюционное происхождение каротиноидов, а также биохимических и фотохимических реакций с их участием. Неясно, в какой степени можно использовать каротиноиды в филогенетике, то есть для реконструкции путей эволюционного развития организмов. Во многих старых работах наборы каротиноидов, характерные для той или иной группы организмов, использовались как важный таксономический признак. Не совсем ясно, насколько такие признаки надежны, особенно если учесть, что одни и те же каротиноиды можно встретить, например, в хлоропластах растений и в глазах млекопитающих.

Практически с детства мы слышим, что на нашем столе должно быть больше овощей и фруктов. Именно они содержат витамины и минералы, которые так необходимы нашему организму для нормальной работы. Сюда же можно отнести каротиноиды. Что это такое? Какую роль эти вещества играют в организме? Рассмотрим далее.

Что представляют собой каротиноиды

Это именно те самые вещества, которые делают овощи и фрукты желтыми, оранжевыми. Растительному организму каротиноиды необходимы для поглощения солнечной энергии. Надо отметить, что цветовые пигменты присутствуют абсолютно в каждом представителе царства живых организмов.

Среди всех известных пигментов они наиболее распространены и представлены в большом разнообразии.

Свойства каротиноидов

Разные группы этих соединений обладают различной способностью к поглощению солнечного света. Но есть некоторые свойства, которые их объединяют:

  • Каротиноиды не растворяются в воде.
  • Обладают хорошей растворимостью в органических растворителях: бензоле, гексане, хлороформе.
  • Способны избирательно абсорбироваться на минеральных абсорбентах, это свойство используется для их разделения методом хроматографии.
  • В чистом виде каротиноиды обладают высокой лабильностью: хорошо поддаются воздействию солнечных лучей, чувствительны к кислороду, не выдерживают сильного нагревания, воздействия кислот и щелочей. Под влиянием этих негативных факторов краситель каротин разрушается.
  • В составе протеиновых комплексов каротиноиды становятся более стабильными.

Разновидности каротиноидов

Несмотря на то что все вещества входят в одну группу и имеют близкую структуру, они классифицируются в зависимости от цветовой пигментации на 2 группы:

  1. Каротины. Это углеводороды В структуре отсутствуют атомы кислорода.
  2. Ксантофиллы - окрашены в различные цвета, начиная от желтого и заканчивая красным.

Каротиноиды - это:

  • Альфа-каротин. В большом количестве обнаружен в овощах оранжевого цвета. Попадая в организм, способен превращаться в витамин А. Недостаток альфа-каротина приводит к развитию сердечно-сосудистых патологий.

  • Бета-каротин. Содержится в желтых фруктах и овощах. Защищает организм от пагубного воздействия свободных радикалов. Это мощный антиоксидант, который можно назвать защитником иммунной системы.
  • Лютеин. Стоит на страже здоровья сетчатки глаз, защищая ее от вредного воздействия ультрафиолета. При регулярном употреблении снижает риск развития катаракты на 25%. Много лютеина содержится в шпинате, капусте, кабачках и моркови.
  • Бета-криптоксантин. Снижает риск развития воспалительных патологий, особенно ревматоидного артрита и других заболеваний суставов. В большом количестве содержится в цитрусовых, тыкве, сладком перце.
  • Ликопин. Принимает непосредственное участие в нормализации холестеринового обмена. Предотвращает развитие атеросклероза, помогает бороться с лишним весом. Подавляет развитие патогенной микрофлоры кишечника. Источником ликопина являются томаты, паста томатная, арбузы.

Все виды каротиноидов играют важную роль в жизнедеятельности живых организмов.

Роль каротиноидов

Рассмотрим значение этих пигментов для человека:

  • Каротиноиды - это вещества, которые являются провитаминами витамина А. В организме он не вырабатывается, но нужен для нормальной жизнедеятельности.
  • Оказывают влияние на состояние кожных покровов и слизистых оболочек.
  • Каротиноиды выполняют антиоксидантную функцию.
  • Оказывают иммуностимулирующее воздействие.
  • Предотвращают хромосомные мутации.
  • Принимают участие в генетических программах уничтожения раковых клеток.
  • Оказывают тормозящее влияние на процесс деления клеток.
  • Подавляют онкогены.
  • Тормозят развитие воспалительных процессов, которые приводят к дегенеративным заболеваниям.
  • Поддерживают здоровье органов зрения.

  • Активизируют ферменты, которые разрушают вредные вещества.
  • Оказывают влияние на регулярность менструального цикла у женщин.
  • Помогают поддерживать водный баланс.
  • Способствуют транспорту кальция через клеточную мембрану.
  • В организме человека каротиноиды - это вещества, которые используются еще и как запас кислорода в нейрональной дыхательной цепочке.

Из перечня видно, что каротиноиды играют важную роль в организме, а так как синтезироваться они не могут, то должны поступать извне.

Природные источники красящих пигментов

Все желтые фрукты и овощи в своем составе содержат каротиноиды. Обнаружены эти вещества и в зелени, просто из-за зеленого хлорофилла они незаметны, а в осенний период именно они придают листьям яркую окраску.

Среди основных источников каротиноидов можно назвать:

  • Пальмовое масло. Его считают лидером по содержанию кофермента Q10, витамина Е и каротиноидов.
  • Морковь.
  • Плоды рябины.
  • Перец оранжевого цвета.
  • Кукуруза.
  • Все цитрусовые.
  • Хурма.
  • Абрикосы.
  • Тыква.
  • Шиповник.
  • Персики.
  • Томаты.
  • Облепиха.

Обнаружены пигменты и в цветах, например, лепестки календулы богаты каротиноидами, пыльце растений. Содержатся они и в яичном желтке, и в некоторых сортах рыбы.

Процесс усвоения пигментов в организме человека

После попадания данных веществ в организм процесс усвоения начинается в тонком кишечнике с участием определенной группы ферментов. Но в процессе исследований установлено, что усвоение каротиноидов происходит лучше, если употребляются мелко измельченные продукты и подвергшиеся термической обработке.

Важно для полного усвоения и наличие жира. Например, если из сырой моркови усвоится всего около 1% каротиноидов, то после добавления масла процент повысится до 25.

Витамин А в ампулах

Если в организм с пищей поступает недостаточное количество каротиноидов, то можно решить эту проблему, принимая синтетические поливитамины, содержащие эти вещества. Производители выпускают средства в виде:

В составе могут, кроме витамина А, содержаться и другие компоненты:

  • Витамины группы В.
  • Витамин С.
  • Фолиевая кислота.
  • Никотинамид.
  • Биотин.
  • Пантотеновая кислота.
  • Кальций.
  • Витамин К.
  • Фосфор.
  • Магний и железо.
  • Кремний и ванадий.
  • Молибден и селен.

Витамин А в ампулах необходимо принимать только после консультации с доктором, чтобы не спровоцировать передозировки.

Дозировка каротиноидов

Если в продуктах питания содержится мало каротина (что это такое, мы уже рассмотрели), то необходимо принимать синтетические препараты.

Доза в сутки должна составлять не менее 25 000 МЕ витамина А. При наличии некоторых патологий придется осуществлять корректировку дозы, снижая или повышая ее.

Для лучшего усвоения необходимо суточную норму разделить на два приема. Дозировка также зависит от того, принимается ли комплекс витаминов или добавка, содержащая только одну разновидность каротина: альфа-каротин, бета-каротин, ликопин.

Надо иметь в виду, что в сутки в организм взрослого человека витамин каротин должен поступать в количестве 2-6 мг. Для примера, в одной моркови содержится 8 мг, но не стоит забывать, что не все количество будет усвоено организмом.

Кому показан прием каротиноидов

  • Для уменьшения риска развития онкологических патологий предстательной железы, легких.
  • Для защиты сердечной мышцы от заболеваний.
  • С целью снижения скорости развития возрастных изменений в сетчатке глаза.
  • Чтобы укрепить иммунную систему.

Основной эффект от их применения связан с тем, что каротиноиды - это природные антиоксиданты. Молекулы способны нейтрализовать нестабильные свободные радикалы. Но надо отметить, что, несмотря на похожесть между собой, каждая группа каротиноидов оказывает свое воздействие на определенный тип тканей в организме человека.

Не все виды каротиноидов с одинаковой успешностью превращаются в витамин А, лучше всего это получается у бета-каротина, а вот альфа-каротин и криптоксантин способны к таким метаморфозам, но в меньшей степени.

Противопоказания к применению

Не стоит также сочетать прием витаминов с терапией другими лекарственными средствами. Перед использованием обязательно надо посоветоваться с врачом.

Побочные проявления

Если в пищу поступает достаточное количество продуктов, содержащих каротин (что это такое, вам уже известно), и вдобавок принимаются синтетические витамины, существует риск передозировки и развития побочных эффектов. Первым признаком будет окрашивание в оранжевый цвет кожи на руках и ступнях. Опасности это не представляет, при снижении дозировки все приходит в норму.

Если имеет место одновременный прием различных групп каротиноидов, то они мешают усвоению друг друга, а в некоторых случаях могут нанести вред организму.

Перед применением таких веществ, особенно при наличии хронических патологий, обязательно надо получить консультацию у врача.

Каротиноиды в профилактике болезней

Если эти вещества будут поступать в организм постоянно и в достаточном количестве, они могут сыграть профилактическую роль в предупреждении некоторых патологий:

  1. Предохраняют от многих видов раковых заболеваний. Например, ликопин подавляет развитие раковых клеток в предстательной железе. В ходе исследований было установлено, что регулярное употребление блюд с содержанием томатов, которые богаты ликопином, снижает риск развития рака простаты на 45%. Способен данный каротиноид защитить и от рака желудка и пищеварительного тракта.
  2. Альфа-каротин снижает риск заболевания раком шейки матки, а лютеин и зеаксантин уберегут от онкологии легких.
  3. Потребление каротиноидов снижает риск развития сердечных патологий. Постоянное присутствие этих веществ в пище снижает риск инфаркта на 75%.
  4. Все каротиноиды отлично справляются с плохим холестерином.
  5. Снижается риск на сетчатке, что становится причиной слепоты в пожилом возрасте.
  6. Каротиноиды предупреждают поражение хрусталика.
  7. Снижается риск заболевания катарактой.

Можно привести некоторые факты и дать полезные рекомендации по применению этой группы веществ.


Казалось бы, при таком обилии продуктов современный человек не может испытывать дефицита каротиноидов, но, как отмечают специалисты, практически 40-60% взрослого населения недополучают этих веществ с пищей. Именно поэтому питание должно быть разнообразным и с большим содержанием овощей и фруктов.

Если этого нет, необходимо покупать синтетические витамины и биологически активные добавки, чтобы обеспечить полноценную работу организма.

К группе каротиноидов относят вещества, окрашенные в желтый или оранжевый цвет. Наиболее известные представители каротиноидов - каротины - пигменты, придающие специфическую окраску корням моркови, а также лютеин - желтый пигмент, содержащийся наряду с каротинами в зеленых частях растений. Окраска семян желтой кукурузы зависит от содержащихся в них каротинов и каротиноидов, получивших название цеаксантина и криптоксантина. Окраска плодов томaтa обусловлена каротиноидом ликопином. Каротиноиды играют большую роль в обмене веществ у растений, участвуя в процессе фотосинтеза.

Группа каротиноидов включает около 65-70 природных пигментов. Каротиноиды содержатся в большинстве растений (за исключением некоторых грибов). Вероятно, во всех животных организмах, но их концентрация почти всегда очень низка. Содержание каротиноидов в зеленых листьях составляет примерно 0,07-0,2 % при расчете на сухую массу листьев. В отдельных исключительных случаях наблюдается, однако, очень высокая концентрация каротиноидов. Например, в пыльниках многих видов лилий содержатся очень большие количества лютеина и каротиноида, называемого антераксантином. Одна из характерных особенностей каротиноидов - наличие в них значительного числа сопряженных двойных связей, образующих их хромофорные группы, от которых зависит окраска. Все натуральные каротиноиды могут рассматриваться как производные ликопина - каротиноида, содержащегося в плодах томатов, а также в некоторых ягодах и фруктах. Эмпирическая формула ликопина С40Н56 .

Путем образования кольца на одном или на обоих концах молекулы ликопина образуются его изомеры: альфа-, бета- или гамма-каротины. Сопоставляя формулы, можно заметить, что альфа-каротин отличается от бета-изомера положением двойной связи в одном из циклов, расположенных по концам молекулы. В отличие от альфа- и бета-изомеров гамма-каротин имеет только лишь один цикл.

Растения, богатые каротиноидами

Наиболее богаты каротинами зеленые части растений и корень моркови.

Природные каротиноиды - производные каротина и ликопина

Каротины являются веществами, из которых образуется витамин А. Поскольку ликопин и каротины содержат 40 углеродных атомов, они могут рассматриваться как образованные восемью остатками изопрена. Все без исключения другие природные каротиноиды - производные четырех указанных выше углеводородов: ликопина и каротинов. Они образуются из этих углеводородов путем введения: гидроксильных, карбонильных или метоксильных групп или же путем частичной гидрогенизации или окисления. В результате введения в молекулу бета-каротина двух оксигрупп образуется каротиноид, содержащийся в зерне кукурузы и называемый цеаксантином. С40Н56О2. Введение двух оксигрупп в молекулу альфа-каротина приводит к образованию лютеина С40Н56О2 (3,3-диокси-альфа-каротин), изомера цеаксантина, содержащегося наряду с каротинами в зеленых частях растений. В результате присоединения к молекуле бета-каротина одного атома кислорода с образованием фураноидной структуры получается каротиноид цитроксантин С40Н56О, содержащийся в кожуре цитрусовых плодов. Продуктами окисления каротиноидов, содержащих в молекуле 40 углеродных атомов, являются кроцетин С20Н2404, биксин С25Н30О4 и бета-цитраурин С30Н40О2. Кроцетин - красящее вещество, содержащееся в рыльцах крокуса в соединении с двумя молекулами дисахарида гентиобиозы в виде гликозида кроцина. Биксин - пигмент красного цвета, содержащийся в плодах тропического растения Bixa orellana; применяется для подкраски масла, маргарина и других пищевых продуктов. В бурых водорослях содержится каротиноид фукоксантин С40Н60О6, который принимает участие в процессе фотосинтеза в качестве так называемого вспомогательного пигмента.

Роль каротиноидов в организме человека

В организме животных и человека каротиноиды играют важную роль в качестве исходных веществ, из которых образуются витамины группы А, а также «зрительный пурпур», участвующий в зрительном акте. В растительном организме каротиноиды играют важную роль в процессе фотосинтеза. Исходя из химического строения каротиноидов, содержащих значительное количество двойных связей, можно предполагать, что они являются в растении переносчиками активного кислорода и принимают участие в окислительно-восстановительных процессах. На это указывает широкое распространение в растениях кислородных производных каротиноидов - эпоксидов, чрезвычайно легко отдающих свой кислород. Каротиноиды легко образуют перекиси, в которых молекула кислорода присоединяется по месту двойной связи и может затем легко окислять различные вещества.