Методы консервации пищевых продуктов. Гигиеническая оценка консервов. Алина калининаконсервирование для лентяек

Методы консервирования пищевых продуктов

Консервирование – это обработка пищевых продуктов для длительного сохранения их доброкачественности различными способами, которые обеспечивают подавление и прекращение биохимических процессов, происходящих в продуктах под действием ферментов. Консервирование позволяет устранить сезонность в потреблении скоропортящихся продуктов, расширить ассортимент товаров и повысить степень их готовности к употреблению. Кроме того, применение некоторых способов консервирования позволяет получать продукты с иными свойствами, т.е. по существу другие товары.

Различают физические, физико-химические, биохимические и химические методы консервирования.

К физическим методам относят консервирование с помощью низких и высоких температур, фильтрования, лучистой энергии, ультразвука, ионизирующей обработки.

Рассмотрим данные методы.

1. Низкие температуры применяют для охлаждения и замораживания продуктов.

Охлаждение – это понижение температуры продукта до минимальной (0-4 °С). При охлаждении не допускается замораживания влаги в продукте. Охлаждение вызывает замедление химических и биохимических процессов, жизнедеятельности микроорганизмов и способствует увеличению сроков хранения товаров. Охлажденные продукты имеют внутри температуру 0 °С или немного ниже. При этом продукты почти полностью сохраняют питательные вещества, вкус и аромат (молоко в охлажденном виде хранится до 24 часов, мясо – 15–20 суток и т.д.).

Температура, при которой начинается образование кристаллов льда в продукте, называется криоскопической. Криоскопическая температура для яиц равна –2,8 °С, для яблок – от 1,7 до –2,8 °С, для рыбы – от –0,6 до –2 °С, для картофеля – от –1,2 до –1,6 °С, для молока составляет –0,5 °С.

Продукты хранят не только в охлажденном, но и в переохлажденном состоянии, а также в замороженном виде.

Замораживание – это охлаждение продуктов до температуры от –12 до –18 °С и ниже, при этом большая часть воды переходит в лед. В результате этого в продукте создаются неблагоприятные условия для развития микроорганизмов, резко сокращается скорость биохимических процессов.

Качество замороженных продуктов сохраняется лучше при быстром замораживании, которое производят при температуре –24 °С и ниже. Однако качество замороженных продуктов по вкусовым и питательным свойствам уступает охлажденным.

При быстром замораживании в продукте образуются мелкие кристаллы льда, которые равномерно распределяются и не изменяют структуры продукта. При размораживании образовавшаяся влага полностью связывается продуктом. В охлажденных и замороженных продуктах значительно замедляются или приостанавливаются микробиологические и биохимические процессы, хорошо сохраняются витамины.

Процесс замораживания применяется также для достижения следующих целей:

1) отделения влаги при концентрировании жидких пищевых продуктов;

2) изменения физических свойств продуктов (твердость, хрупкость и др.) при подготовке их к дальнейшим технологическим операциям;

3) сублимационной сушки;

4) производства своеобразных пищевых продуктов и придания им специфических вкусовых и товарных качеств (мороженое, пельмени и другие быстрозамороженные продукты).

Эффект замораживания достигается при температуре в центре продукта –6 °С и ниже. Замороженные продукты хранят при температуре не выше –18 °С.

Замороженный продукт отличается от охлажденного рядом признаков и свойств:

1) твердостью – результат превращения воды в лед;

2) яркостью окраски – результат оптических эффектов, вызываемых кристаллизацией льда;

3) уменьшением удельного веса – следствие расширения воды при замораживании;

4) изменением термодинамических характеристик (теплоемкость, теплопроводность, температуропроводность).

При замораживании в отличие от охлаждения происходит частичное перераспределение влаги, травмирование тканей продукта кристаллами льда, а также иногда частичная денатурация белка.

Во время замораживания продуктов происходит их усушка. Унесенная воздухом влага осаждается на поверхности воздухоохладителей в виде «снеговой шубы». Усушки почти не происходит, если продукт находится в герметичной таре или упаковке.

2. Высокие температуры применяют для пастеризации и стерилизации продуктов.

Пастеризация – это нагревание продукта до температуры ниже 100 °С. При пастеризации погибают только вегетативные клетки микробов. Поэтому пастеризация хотя и удлиняет сроки хранения, но не гарантирует их полной сохранности. Пищевая ценность пастеризованных продуктов практически не изменяется, только частично разрушается витамин С.

Стерилизация – это нагревание продукта при температуре свыше 100 °С. При стерилизации погибает большинство микроорганизмов и их споры, а также разрушаются ферменты. Поэтому стерилизованные продукты сохраняются длительное время. При стерилизации снижается их вкусовая и питательная ценность, разрушаются витамины.

Асептическим методом консервируют жидкие и пюреобразные продукты: продукты подвергаются кратковременной высокотемпературной стерилизации в крупных емкостях, а затем фасуют в стерильную тару и укупоривают в асептических условиях. При этом сокращается время термической обработки продукта, в результате лучше сохраняется его качество после стерилизации и при последующем хранении.

Продукты стерилизуют также электрическим током сверхвысокой частоты и ультразвуком. Бактерицидными свойствами обладают ультрафиолетовые лучи, которыми стерилизуют поверхности продуктов, воды, воздуха, тары и оборудования. Ультразвук разрушает микроорганизмы и их споры. Механическая стерилизация – фильтрование жидких продуктов (фруктовых соков) через специальные фильтры, задерживающие микроорганизмы. Облучение ионизирующей радиацией можно использовать для задержки прорастания картофеля, лука при хранении т.д. Этот метод находится в стадии разработки.

Физико-химические методы – это консервирование продуктов поваренной солью, сахаром и сушкой.

Консервирующими факторами являются повышение осмотического давления (т.е. давления, вызванного молекулами растворенного вещества) и снижение активности воды. Повышение осмотического давления достигается внесением в продукт поваренной соли или сахара либо концентрированием растворенных веществ самого продукта путем его высушивания. При высоком осмотическом давлении снижается активность воды, наступает плазмолиз (обезвоживание) клеток микробов, инактивируются ферменты. Консервирующее действие поваренной соли обусловлено также тем, что активные катионы натрия и анионы хлора присоединяются по месту пептидных связей белковых молекул, в результате чего белки продукта становятся недоступными для питания микроорганизмов.

1. При консервировании сушкой (обезвоживание) необходимую для жизни и деятельности микроорганизмов влагу из продуктов удаляют обычно тепловым способом. Наиболее распространена сушка продуктов воздухом, нагретым до 80–120 °С и выше. Для каждого вида продуктов разработаны оптимальные режимы сушки.

Существует естественная и искусственная сушка. Естественным способом сушат абрикосы, виноград и другие плоды. Искусственная сушка продуктов осуществляется в специальных сушильных камерах и аппаратах. Известно много способов сушки: нагретым до 80–120 °С воздухом (конвективная, распылительная), горячей поверхностью (вальцевая сушка), сублимационная, вакуумная, микроволновая и другие виды.

Вакуумная сушка характеризуется тем, что продукт высушивается без доступа воздуха при сравнительно низкой температуре (40–60 °С), благодаря чему хорошо сохраняются первоначальные свойства продукта.

Микроволновая сушка проводится с использованием энергии сверхвысокой частоты (СВЧ); процесс сушки при этом ускоряется, продукты приобретают пористую структуру, увеличиваются в объеме.

При сушке методом сублимации продукт обезвоживается в замороженном состоянии (при –5 °С и ниже) и при глубоком вакууме (1,5–2,0 гПА). В этих условиях влага продукта из твердого состояния (льда) переходит в парообразное, минуя жидкую фазу. Происходит возгонка, т.е. сублимация, замороженной влаги в пар. У высушенных продуктов быстро восстанавливаются исходные свойства при заливке их теплой водой. Методом сублимации консервируют мясо, фрукты, овощи, соки и другие продукты.

Консервирование сушкой имеет свои преимущества и недостатки. Преимущества состоят в том, что сушеные продукты хорошо сохраняются, удобны для транспортирования, обладают более высокой калорийностью.

К недостаткам сушки следует отнести изменение физического состояния продукта (внешнего вида, формы, объема, плотности), потери витаминов, ароматических и вкусовых веществ. Размеры потерь, а следовательно, и питательная ценность продуктов во многом зависят от вида применяемой сушки. Наиболее значительные потери наблюдаются в продуктах при солнечной сушке, сушке горячей поверхностью и нагретым воздухом.

2. Консервирование солью применяют для подавления или прекращения жизнедеятельности микроорганизмов в результате повышения осмотического давления в продукте при добавлении в него поваренной соли. Высокое осмотическое давление вызывает обезвоживание и плазмолиз микробной клетки. Консервирующий эффект зависит от концентрации клетки.

При солении происходит частичная потеря питательных веществ продукта, которые вместе с водой переходят в рассол, изменяются вкусовые свойства. Некоторые виды рыбы (сельди, лососевые) в результате выдержки при посоле приобретают особые вкусовые достоинства.

3. Консервирование сахаром также основано на повышении осмотического давления, обеспечивающего подавление развития микроорганизмов в продукте при добавлении в него сахара. Консервирующее действие сахара слабее, чем соли, поэтому консервацию сахаром часто сочетают с пастеризацией или стерилизацией продукта в герметической таре, а также варкой. Этим способам готовят варенье, джем, повидло, цукаты. Продукты, консервированные сахаром, имеют более высокую калорийность по сравнению с исходным сырьем, однако при нагревании возможны потери витаминов и ароматических веществ.

Биохимические методы консервирования. Эти методы основаны на подавлении действия микроорганизмов и ферментов путем добавления консервирующих веществ в продукты или образования их в результате биохимических (ферментативных) процессов. Типичным примером биохимического способа консервирования является квашение.

Квашение основано на консервирующем действии молочной кислоты, образующейся в результате молочнокислого брожения сахаров продукта. Накопившаяся молочная кислота, изменяя кислотность среды, подавляет деятельность гнилостных микроорганизмов, чем и объясняется хорошая сохраняемость квашеных продуктов в охлажденных помещениях. Одновременно с образованием молочной кислоты накапливается этиловый спирт, который также оказывает консервирующее действие.

Квашение применяют для консервирования овощей (квашеная капуста, соленые огурцы, томаты и др.), плодов, грибов. Квашение, соление и мочение – это различные названия одного и того же способа консервирования. Соль, добавляемая в продукты при квашении, выполняет роль вкусового компонента, способствует выделению клеточного сока, содержащего сахар, а также благоприятно влияет на развитие молочнокислых бактерий на первой стадии брожения.

Преимущество квашения состоит в том, что оно позволяет получать продукт с другими вкусовыми свойствами, а также сохранять значительное количество витамина С.

Химические методы. К химическим методам относят следующие методы:

1. Консервирование этиловым спиртом (основано на губительном действии спирта на микроорганизмы). В концентрациях 12– 16% этиловый спирт замедляет развитие микрофлоры, а при 18% полностью подавляет. Этиловый спирт используется в качестве консерванта при производстве полуфабрикатов плодово-ягодных соков, обуславливает длительное хранение вина и других алкогольных напитков.

2. Маринование (основано на подавлении жизнедеятельности микроорганизмов уксусной кислотой, которая так же, как и молочная, повышает активную кислотность среды). Уксусную кислоту в количестве от 0,6 до 1,2% добавляют при мариновании плодов, овощей, рыбы, грибов. Небольшая концентрация кислоты не может полностью гарантировать защиту продукта от порчи в процессе хранения. Поэтому плоды и овощи, маринованные небольшим количеством уксусной кислоты, подвергают пастеризации или стерилизации, маринование рыбы сочетают с солением. Более же высокая концентрация уксусной кислоты ухудшает вкус продукта и небезвредна для организма человека.

3. Кроме перечисленных кислот, с целью консервирования используют сорбиновую, лимонную, бензойную кислоты и их соли. Наиболее перспективной из них является сорбиновая кислота, которая обладает бактерицидным действием по отношению к дрожжам и плесневым грибам. В отличие от других химических консервантов сорбиновая кислота не оказывает вредного воздействия на организм человека и не придает продуктам какого-либо привкуса и запаха. Сорбиновую кислоту и ее соли применяют для консервирования фруктовых пюре, соков, томатопродуктов и др.

Известно много других химических веществ, которые находят применение для удлинения сроков хранения пищевых продуктов. К таким веществам относят метабисульфит калия, сернистый газ, уротропин, борную кислоту и т.д.

Разработчики биоконсервантов столкнулись с серьезной трудностью. В связи с повышением стоимости металлической тары в настоящее время стало возможным использование полимерной тары для консервирования пищевых продуктов. Но недостатком данного вида материала является снижение сроков годности продукта. Поэтому прибегают к различным консервантам, которые могут оказывать на организм человека неблагоприятное воздействие. Среди современных и достаточно безопасных консервантов следует выделить препараты естественного происхождения.

К препаратам естественного происхождения относятся продукты с добавлением бифидум– и лактобактерий. Также используются лактококки, обладающие полезными для человека свойствами. Представителем данной группы является низин – антимикробное вещество природного происхождения. В этом его отличие от традиционных и совсем не безвредных уксусной, бензойной, сорбиновой кислот. Он является единственным антибиотиком, допущенным органами здравоохранения к широкому применению в пищевой промышленности.

Учитывая потребность в качественных консервах с высокими органолептическими показателями, пищевая промышленность, в особенности консервная отрасль, начинают внедрять биоконсерванты, которые имеют высокую потребительскую ценность.

Комбинированные способы консервирования. Находят широкое применение в производстве и хранении пищевых продуктов. К ним относят, например, копчение рыбы, мясных изделий. Консервирующими факторами при копчении являются химические вещества, переходящие в продукт из дыма или коптильной жидкости, частичное обезвоживание продукта, а также поваренная соль. Товары холодного копчения могут храниться при обычной температуре несколько месяцев. К комбинированным методам стоит также отнести вяление рыбы (соление сочетается с подсушиванием), получение молочных консервов (сгущение сочетается с сахаром или стерилизацией).

Комбинированные методы консервирования часто дают положительные результаты для сохранения пищевых достоинств продукта и повышения стойкости в хранении.

Санитарная экспертиза консервов

Такие экспертизы проводятся для оценки качества и безопасно­сти консервов. К переработке на мясные (птичьи, рыбные, мо­лочные) консервы допускают соответствующее сырье, прошед­шее ветеринарно-санитарный осмотр. Перед стерилизацией содер­жимое консервных банок исследуют микробиологически. Готовые консервы подвергают органолептической проверке и лаборатор­ному исследованию для определения физико-химических и мик­робиологических показателей. Отбор проб консервов и подготовка их к лабораторным исследованиям на соответствие требованиям безопасности по микробиологическим показателям проводится после осмотра и санитарной обработки, проверки герметично­сти, термостатирования консервов, определения внешнего вида консервов после термостатирования.

В соответствии с действующим стандартом принята единая си­стема маркировки банок с различной консервированной продук­цией (главным образом на жестяных консервных банках). Марки­ровка в виде буквенно-цифрового кода представляет собой пас­порт банки с консервами. Кроме того, на банке указывают дату изготовления консервов и смену, их изготовившую. Обычно мар­кировочные знаки выштамповываются или наносятся несмывае­мой краской на крышки металлических банок.

Контакт металлической тары с содержимым часто приводит к нежелательным химическим взаимодействиям - коррозии на по­верхности жести и олова. Эти явления более заметно выражены в консервах с высокой кислотностью (маринадах, овощных закусоч­ных и т.д.). В банках с консервами из продуктов, содержащих много белковых веществ (мясных, рыбных, из горошка и др.), обычно обра­зуется так называемая мраморизация, или сульфидная коррозия, при взаимодействии олова и железа жести с сернистыми компонен­тами белковых продуктов. Эта сульфидная прочная синевато-корич­невая пленка не вредна для здоровья, но она ухудшает внешний вид продукта. Для предотвращения коррозии и мраморизации консерв­ную тару изготовляют из предварительно лакированного листового металла (белой жести, алюминия и его сплавов), а иногда лакируют готовые банки изнутри пищевыми лаками методом распыления.

К основным видам брака консервов относятся:

1) истинный бомбаж (вздутие крышек и донышек вследствие газообразования в результате жизнедеятельности микроорганиз­мов при недостаточной стерилизации - биологический бомбаж, или при взаимодействии кислот продукта с металлом в нелакиро­ванных банках - химический бомбаж);

2) ложный бомбаж (при чрезмерном наполнении банок, на­гревании или замораживании);

3) деформация банок (хлопуши, птички);

4) ржавление.

Оптимальные условия хранения консервов - температура от О до 20 °С, относительная влажность воздуха не выше 75 % (для ва­ренья, джемов и повидла во избежание засахаривания - от 15 °С) в обычных складских помещениях в течение длительных сроков (обычно несколько лет). Пресервы следует хранить при низких температурах (ниже 0°С).

К микробиологическим показателям безопасности (промыш­ленной стерильности) полных консервов (групп А, Б, В и Г) от­носятся:

Спорообразующие мезофильные аэробные и факультативно-анаэробные микроорганизмы группы В. subtilis;

Спорообразующие мезофильные аэробные и факультативно-анаэробные микроорганизмы группы В. cereus и В. polymyxa;

Мезофильные клостридии;

Неспорообразующие микроорганизмы, молочно-кислые мик­роорганизмы, плесневые грибы, дрожжи;

Спорообразующие термофильные анаэробы, аэробные и фа­культативно-анаэробные микроорганизмы.

Микробиологические показатели безопасности неполных кон­сервов включают в себя: КМАФАнМ, БГКП, сульфитредуциру-ющие клостридии, сальмонеллы, В. cereus, S. aureus.

С позиций химической безопасности в консервированных про­дуктах контролируются (кроме показателей безопасности, отно­сящихся к сырью) содержание олова и хрома (для консервов в сборной жестяной и хромированой таре), продуктов деструкции полимерных и других синтетических материалов (в зависимости от класса применяемого полимера), концентрации используемых пищевых добавок (консервантов).

Целью консервирования является получение продукта, способного храниться длительное время без значительных изменений качества. Существует несколько способов консервирования, но при любом из них создаются такие условия, когда полностью прекращается или в значительной степени замедляется действие микроорганизмов.


Наиболее широко применяется способ консервирования тепловым воздействием - пастеризацией и стерилизацией. Кроме этого применяются охлаждение и замораживание, квашение и соление, сушка, использование антисептиков и антибиотиков, уваривание с добавлением сахара и др.

Тепловое воздействие - пастеризация, стерилизация; действие низких температур - замораживание, охлаждение; обезвоживание - сушка и т. п. основаны на принципе прекращения жизнедеятельности микроорганизмов и жизненных процессов в сырье под действием физических факторов. Соление, сульфитирование, консервирование антибиотиками и т. п. основаны на подавлении жизнедеятельности микроорганизмов под воздействием химических веществ, введенных извне. Квашение происходит за счет образования консервирующих химических веществ в результате деятельности микроорганизмов.

Консервирование продуктов под действием высоких температур

Возможность консервирования всех видов животного и растительного сырья была открыта французским ученым Никола Аппером (1750 – 1841).

В результате 40-летних опытов и исканий Аппер выявил и установил основы нового метода консервирования, которых! базируется на двух принципах: помещение надлежащим образом обработанного пищевого сырья в воздухонепроницаемую, герметически укупоренную оболочку и нагревание его в водяной бане более или менее длительное время в зависимости от природы консервируемого вещества. Сущность этого метода в том, что гибель микробных клеток в этих условиях наступает в результате коагуляции белков протоплазмы. Однако уничтожение микробов не происходит мгновенно. Для этого необходимо определенное время, называемое летальным. Оно зависит от температуры обработки, вида микроорганизмов и их количества, химического состава продукта.

В практике консервирования пастеризацией принято называть процесс, который проводится при температуре до 100.° С и при котором погибают неспорообразующие микроорганизмы. Для уничтожения спорообразующих микроорганизмов применяется стерилизация при температуре свыше 100°С. Слово «стерилизация» происходит от латинского «бесплодный». Температура свыше 100°С достигается под давлением в герметичном сосуде.

Подбор температуры тепловой обработки с целью обеспечения длительной сохранности консервов зависит от химической природы, физического состояния, общей обсемененности продукта перед стерилизацией, размеров и состояния тары.

Микроорганизмы, способные вызвать порчу продукта, имеющего активную кислотность ниже рН 4,4, могут быть уничтожены при температуре до 100°С.

Обработка продукта с рН более 4,4 проводится при высоких температурах и в течение длительного времени, за которое продукт достигает полной кулинарной готовности. Поэтому почти все консервы, прошедшие стерилизацию или пастеризацию, готовы к употреблению.

Чрезмерное нагревание продукта приводит не только к отмиранию микроорганизмов и получению стерильного продукта, но и к нежелательным изменениям вкуса и аромата. Для того чтобы снизить тепловые режимы при стерилизации, необходимо, прежде всего, повышать санитарное состояние производства, исключающее чрезмерное загрязнение продукта микроорганизмами, а также использовать способы, обеспечивающие ускорение теплопередачи и прогреваемости продукта (уменьшение вместимости тары, вращение банок при стерилизации и т. д.).

Одной из разновидностей теплового консервирования является стерилизация токами высокой частоты. Этот способ заключается в том, что продукт в герметически укупоренной стеклянной банке помещается в поле переменного электрического тока высокой частоты. При этом содержащиеся в продукте электрически заряженные частицы (ионы) под действием переменного поля приходят в колебательное движение. За счет внутреннего трения этих частиц выделяется большое количество тепла, которое в течение небольшого промежутка времени (от нескольких секунд до 1 – 2 мин) прогревает всю массу продукта. Температура обработки определяется продолжительностью воздействия. Таким образом, предупреждается протекание нежелательных биохимических реакций (меланопдипообразование, разложение питательных веществ и т. д.), а также уменьшается разваривание продукта.

Охлаждение и замораживание

Сущность этого метода консервирования в том, что при низких температурах подавляется жизнедеятельность микроорганизмов, снижается активность ферментов, замедляется протекание биохимических реакций. При пониженных температурах, характерных для охлаждения, в плодах и овощах продолжают протекать, хотя и медленно, процессы дыхания, которые позволяют им сохраняться свежими в течение нескольких недель и даже месяцев.

Охлаждение осуществляют с помощью искусственного или естественного холода. При хранении в ледниках или камерах с искусственным холодом температура продукта снижается до 0°С (с колебаниями ±2 – 3°С). При этой температуре не происходит замерзание клеточного сока.

Замораживание - это способ консервирования, при котором используются низкие температуры, обеспечивающие полное или частичпое превращение клеточного сока в лед. Чем быстрее осуществляется процесс замораживания и чем ниже достигаются при этом температуры, тем лучше качество замороженного продукта. При замораживании происходит почти полпое прекращение деятельности микроорганизмов, многие из них погибают. Безусловно, полной гибели всех микроорганизмов при этом не происходит. Некоторые из них сохраняют целость, а отдельные способны образовывать споры и сохранять свою жизнеспособность. При замерзании клеточного сока внутри и вне клеток образуются кристаллы льда, которые приводят к механическим повреждениям оболочки. При повышении температуры целые микроорганизмы снова развиваются, и это может привести к порче продукта. При хранении замороженных продуктов необходимо строго контролировать температуру хранения, обеспечивать хорошее санитарное состояние в подготовительных помещениях и камерах и использовать для замораживания только высококачественное сырье.

Подавление жизнедеятельности микроорганизмов заключается в том, что в замороженных пищевых продуктах большая часть влаги превращена в твердое состояние и микроорганизмы, которые питаются осмотическим путем, лишаются возможности использовать отвердевшие пищевые продукты. Из-за отсутствия жидкой фазы прекращается деятельность ферментов, вследствие чего приостанавливаются биохимические процессы. Установлено, что после того, как достигнута криоскопическая температура для данного продукта, последующее понижение температуры вдвое приводит к вымерзанию примерно половины количества оставшейся влаги. Например, если криоскопическая температура продукта равна -2 С, то при снижении температуры до – 4°С вымерзнет 50% влаги. При дальнейшем понижении до – 8°С превратится в лед 75% исходного количества влаги. Расчеты показывают, что при температуре –16°С вымерзнет 87,5% влаги, а при температуре -32°С – 93,8%. Уже при – 16°С большая часть влаги превратится в лед, поэтому с практической точки зрения нет необходимости доводить температуру до – 32°С. Общепринятый температурный уровень, до которого доводят почти все замораживаемые продукты, составляет – 18°С, так как для некоторых пищевых продуктов криоскопическая температура бывает – 2°С.

Сушка

Как метод консервирования сушка пищевых продуктов известна с древних времен. Этот метод не требует в ряде случаев специальных устройств, и для него может быть использована энергия солнца.

Для жизнедеятельности микроорганизмов необходима влага: для жизни бактерий требуется не менее 30% влаги, для плесеней - 15%. Микроорганизмы используют вещества, находящиеся в клеточном соке в сравнительно небольших концентрациях, и при этом в водных растворах проходят все биохимические реакции. При удалении влаги концентрация этих веществ увеличивается и они уже являются ингибиторами жизнедеятельности микроорганизмов, которые хотя и не погибают, но вследствие неблагоприятных условий не развиваются.

Овощи и фрукты обычно высушивают до содержания остаточной влаги соответственно 12 – 14 и 15 – 25%. В некоторых случаях высушивание доводят до 4 – 8% влаги, но такие продукты очень гигроскопичны и их следует хранить только в герметически укупоренной таре. До такой влажности продукт может быть высушен сублимационной сушкой. Этот способ заключается в том, что сырье предварительно замораживается при очень низких температурах (до – 50°С), и в последующем при глубоком вакууме от 1,33 до 0,13 Па путем подогрева продукта лед, образовавшийся из клеточного сока, переходит в пар, минуя жидкую фазу. Быстрое замораживание при очень низких температурах приводит к образованию мелких кристаллов, что не нарушает клеточного скелета плодов и овощей. Это позволяет получить продукты без нарушения их формы. Такие продукты легко восстанавливаются.


Консервирование антисептиками

Консервирование антисептиками основано на свойстве некоторых химических веществ подавлять жизнедеятельность микроорганизмов. Такие вещества называют антисептиками или консервантами.

В связи с тем, что этот способ используется для пищевых продуктов, к антисептикам предъявляются особые требования: они должны проявлять свое действие в сравнительно малых дозах, быть безвредными для человека, не придавать продукту неприятные запах и вкус. Следует сказать, что ни один из антисептиков полностью не удовлетворяет изложенным требованиям, поэтому применение антисептиков в консервировании регламентировано. Минздравом СССР разрешены к применению в консервной промышленности сернистая и уксусная кислоты, этиловый спирт, сорбиновая кислота и ее соли, соли бензойной кислоты и некоторые другие. Наиболее широко применяется сернистый ангидрид. Процесс, при котором используется действие сернистого газа, носит название сульфитации. Сульфитация может осуществляться сухим или мокрым способом. Сухой способ также называется окуриванием. Применение водного раствора приводит к удалению из плодового сока ценных веществ - Сахаров, кислот и т. д. Плоды и овощи помещаются в камеру, в атмосфере которой содержится сернистый газ. Он наиболее сильно действует на бактерии, в меньшой степени - на плесени и дрожжи. В камеры сернистый газ подается из баллонов или от специальных устройств, где сжигается комовая сера.

При консервировании жидких или пюреобразпых продуктов сернистый газ добавляется в виде водных растворов (сернистая кислота) или путем пропускания струи газа через пюре. Последний процесс осуществляется с помощью специальных устройств - сульфитаторов. Сульфитацию пюре и соков рекомендуется проводить при пониженных температурах, так как при этом увеличивается растворимость газа в жидкости. Предельная концентрация сернистого ангидрида в сульфитированных пюре и соках 0,02%. Сернистый газ легко удаляется при нагревании, поэтому при переработке сульфитированных полуфабрикатов их предварительно нагревают.

Консервирующее действие сернистой кислоты заключается в том, что она растворяется в липоидно-протеиновом комплексе клетки микроорганизма и проникает в плазму. При этом происходят структурные изменения, приводящие к гибели клетки.

Сернистая кислота, являясь акцептором кислорода, задерживает дыхание микроорганизмов. При взаимодействии с продуктами жизнедеятельности микроорганизмов, а также ферментами, сернистая кислота нарушает обмен веществ, и клетка гибнет. Под действием сернистой кислоты легко погибают бактерии, особенно молочнокислые и уксуснокислые.

Являясь сильным восстановителем, сернистая кислота препятствует окислению химических веществ плодов. Блокируя ферменты, катализирующие необратимые изменения витамина С, она способствует его сохранению.

В кислой среде (при рН меньше 3,5) консервирующим действием обладают и соли сернистой кислоты (сульфиты и бисульфиты). При сульфитации применяются только химически чистые соли сернистой кислоты. При сухой сульфитации яблок, айвы, персиков и мелких косточковых плодов потери и отходы составляют 4 – 5%, ягод - 10%.

Другими антисептиками являются бензойная кислота и ее натриевая соль. При концентрации 0,05 – 0,1% подавляет действие дрожжей и плесеней, а на бактерии действует слабее. В таких концентрациях она безвредна для человека.

Сорбиновая кислота и ее натриевая и калийная соли в кислой среде при концентрации 0,025 – 0,05% оказывают бактерицидное действие на плесени и дрожжи, но на бактерии почти не влияют.

Этиловый спирт применяют как консервант для хранения плодовых соков для последующего использования их в производстве безалкогольных напитков. Требуемая концентрация достигается путем спиртования (внесения пищевого спирта) в консервируемый сок. Обычно считается, что требуемый эффект консервирования достигается, когда продукт будет иметь 16% объемных спирта при наличии 16% Сахаров.

Широкое распространение в качестве консерванта получила уксусная кислота. Установлено, что в концентрациях 1,2 – 1,8% она подавляет жизнедеятельность многих микроорганизмов, в том числе и гнилостных. В концентрации до 0,6% уксусная кислота не может сама обеспечить полную сохранность продукта, поэтому ее применение сочетается с другими способами консервирования (тепловая стерилизация, хранение при низких температурах). Уксусная кислота очень резкая на вкус, поэтому, чтобы снизить вкусовую кислотность продукта, ее применяют совместно с молочной кислотой. Молочная кислота может образовываться при солении, квашении, мочении плодов и овощей, но иногда ее вносят извне. Под действием молочнокислых бактерий сахар, содержащийся в продукте, переходит в молочную кислоту, накопление которой губительно действует на некоторые микроорганизмы. В концентрациях 0, 6% и выше она оказывает консервирующий эффект.

Антибиотики способны полностью подавлять жизнедеятельность микроорганизмов, но их применение ограничено, так как вместе с пищевым консервированным продуктом они воздействуют на организм человека и приводят к нежелательным последствиям. Поэтому в настоящее время использование антибиотиков допускается после тщательных медико-биологических исследований. Наиболее перспективным для консервирования плодов и овощей является антибиотик низин (низаплен), так как он относительно безвреден для человека. Его используют при консервировании зеленого горошка, картофеля и других овощей в сочетании с тепловой стерилизацией, продолжительность которой при этом значительно сокращается.

Консервирование с применением сахара и соли

Этот способ основан на создании таких условий, при которых в продукте создается повышенное осмотическое давление, подавляющее жизнедеятельность микроорганизмов.

При варке повидла, джемов, варенья, цукатов, когда к исходному сырью добавляется большое количество сахара (в среднем 1 кг сахара на 1 кг сырья) и происходит частичное испарение воды. В готовом продукте создается большая концентрация сахара (60- 65%). При этом микроорганизмы не могут использовать для своей жизнедеятельности питательные вещества. Клетки микроорганизмов обезвоживаются из-за более низкой концентрации сахара внутри них, чем снаружи. Этот процесс обезвоживает клетки микроорганизмов, и они погибают. Но при снижении концентрации сахарного сиропа в продукте создаются условия, благоприятные для развития микроорганизмов, что приводит к его забраживанию и плесневению.

Аналогичное воздействие оказывает добавление поваренной соли до 10 – 20%.

Как способ консервирования иногда используют фильтрование консервируемого продукта через микробиологический фильтр. Этот способ применим только для прозрачных соков. В герметически закрытой системе, прошедшей стерильную обработку, подлежащий консервированию продукт фильтруется через специальные фильтры с порами, задерживающими микроорганизмы и пропускающими жидкую фазу с растворенными в ней питательными веществами. Этим методом осуществляется стерилизация воздуха через бактериологический фильтр в установках асептического консервирования.

Консервирование с помощью ионизирующего облучения основано на том, что под действием жесткого излучения (у-лучи) происходит ионизация атомов, молекул и микроорганизмов, что приводит к разрушению клеток очень быстро и почти без нагрева.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

В процессе хранения пищевого сырья или готовых продуктов возможна их порча, связанная с жизнедеятельностью микроорганизмов. В результате появляются новые, более простые по составу вещества, обладающие неприятным вкусом и запахом, некоторые из них ядовиты. Эту порчу можно замедлить, сильно затормозить, но полностью избежать невозможно.

Многие продукты даже при непродолжительном сроке хранения часто портятся (мясо, рыба, молоко, большинство овощей, ягод и плодов и т.д.). Предохранить их от порчи и увеличить сроки хранения можно с помощью консервирования.

Консервирование - это обработка пищевых продуктов для увеличения сроков их хранения.

Задача консервирования продуктов - прекратить деятельность микроорганизмов и предотвратить нежелательные изменения продуктов.

Консервировать необходимо исключительно свежее сырье. Существует много методов консервирования. Выбор того или иного из них зависит от вида и свойств сырья, а также назначения готового продукта, однако во всех случаях нужно не только сохранить сырье или готовую продукцию, но и получить продукт высокой пищевой ценности.

История консервирования

Когда человек был ещё собирателем и охотником и буквально «едва сводил концы с концами», он не нуждался в консервировании продуктов питания. Длительное их хранение не требовалось, так как природа предоставляла ему постоянные источники пищи. С началом неолитической революции (примерно 10 тыс. лет назад), когда человек стал переходить к оседлому образу жизни, на смену собирательству и охоте пришли обработка земли и приручение диких животных. Человек стал делать запасы продовольствия, наподобие белки или хомяка защищая их от сородичей и непогоды. Переход к питанию припасами приводил и к изменению его структуры, нарушению традиционных (физиологичных) норм. Значительно изменялись при этом и органолептические свойства продуктов.

Первыми способами консервирования были сушка и засолка. Пища, сохранённая таким образом, имела соответствующие недостатки. Так, один парижский торговец XIV века советовал своим покупателям для приготовления сушеной трески, хранившейся 12 лет, вымочить её в течение ночи в воде, а затем отбить кувалдой до размягчения. Читая исторические документы о питании населения умеренных климатических зон зимой или о рационе моряков, мы видим, что эта пища полностью или в основном состояла из консервированных продуктов. В питании преобладали зерно и мука, сушёное, вяленое и солёное мясо или рыба. Во многих странах хлеб пекли только два или три раза в году. Потом его высушивали и месяцами употребляли размоченным, в виде кашицы. Однообразие такой пищи очевидно. О влиянии методов консервирования на составляющие продуктов питания почти ничего не знали. Нередки были болезни.

С течением времени список применяемых консервантов пополнился спиртом, коптильным дымом, сернистой кислотой, уксусной, молочной и некоторыми другими органическими кислотами. Эти вещества использовали в течение двух тысячелетий.

Сдвиги в консервировании продовольствия появляются с началом индустриализации. Потребитель становится требовательнее, его больше не удовлетворяет качество пищи, сохраняемой с помощью известных к тому времени консервирующих средств, -- они слишком сильно изменяют структуру и свойства продуктов питания.

Достижения химии начали применять и в консервировании. Стали возникать теории, обосновывающие технологию этого процесса. Исследуя дым, Райхенбах обнаружил в продуктах сухой перегонки древесины маслянистое вещество, которое назвал креозотом из-за его способности сохранять мясо. О своём открытии он сообщил в восторженных тонах, хотя тогда же установил, что это вещество представляет опасность для здоровья. Применение креозота ограничивалось его неприятным запахом. Однако в одной книге по химии пищевых продуктов, изданной в 1848 году, креозот подробно описывался как ещё одно консервирующее средство наряду с солью (применение которой правильно называли косвенной сушкой), сушкой, нагреванием, молочнокислым брожением, сахаром, спиртом, уксусом и коптильным дымом.

Лишь сто лет назад стали предприниматься усилия с целью не только «как-нибудь» сохранить продукты питания, но и защитить имеющиеся в них нестойкие составные части от разрушения, а также сохранить их питательные и вкусовые свойства. На первых порах в список пищевых консервантов попали такие вещества, как плавиковая кислота, фториды, хлораты и т.п. Предложения добавлять такие «химикалии» к продуктам питания не были связаны с аморальными побуждениями (корыстью или желанием ввести в заблуждение). Скорее всего они были вызваны незнанием возможных вредных последствий их применения, ведь токсикологические исследования ещё не проводились. Существовало мнение, что добавление тех малых количеств веществ, какие необходимы для консервирования, едва ли может нанести ущерб здоровью. Поэтому вначале в выборе консервантов не особенно церемонились. Сделанное около ста лет назад предложение о внесении салициловой и борной кислот в перечень пищевых консервантов было прогрессивным, хотя сегодня оба эти консерванта уже не удовлетворяют требованиям безопасности.

Слово «Консервирование» произошло от латинского слова conserve, что означает «Предохранение». Научные основы современных методов консервирования были даны еще в XIX веке, когда кроме видимых виновников разложения продуктов, таких, как плесень и грибки, были обнаружены и невидимые формы микроорганизмов, бактерии и дрожжевые грибки. Это открытие сделал знаменитый французский химик Луи Пастер (1822 - 1895), который подробно изучил прежде всего дрожжевые и патогенные микробы и одновременно заложил научную основу умерщвления их спор. В честь него был назван «Пастеризацией» способ частичной стерилизации веществ, прежде всего жидких, повышенной температурой

В конце XIX столетия в качестве консерванта стали применять муравьиную кислоту, а в начале XX века -- бензойную кислоту, которая и сегодня используется в больших масштабах. Поскольку вначале к бензойной кислоте (и к салициловой) относились острожно, причисляя их к соединениям ароматического ряда, и считая канцерогенными, велись поиски её заменителей. Ими оказались хлорбензойная кислота и сложные эфиры оксибензойной кислоты. В конце 30-х годов в качестве консервантов стали применять соли пропионовой кислоты, а после Второй мировой войны -- сорбиновую кислоту и её соли. Широкое распространение сорбиновой кислоты является в значительной мере следствием возникшего в 50-х годах нового подхода к токсикологической оценке пищевых добавок вообще и консервантов в частности. Это -- ненасыщенная жирная кислота, исследована она лучше всех других широко применяемых консервантов, и безопасность её использования не вызывает ни малейшего сомнения

В последние 15-20 лет наблюдается сильное стремление к потреблению свежих продуктов питания. В связи с этим промышленность старается сократить путь от производителя к потребителю. В развитых странах для сохранения свежих продуктов широко используют охлаждение (даже во время транспортировки).

Современные тенденции развития способов сохранения продуктов питания дают основания полагать, что в недалеком будущем станут применяться «щадящие» способы химического консервирования. Под этим следует понимать применение веществ, которые могут быть получены из растений или микроорганизмов, проявляющих антимикробные свойства. Такие вещества неспециалисты считают менее подозрительными, потому что это природные соединения.

Примечательно, что в публикациях, направленных против пищевых добавок, консерванты критикуются меньше всего, так как критикам известно, что в определённых случаях применение консервантов защищает здоровье потребителей. Таким образом, несомненно, что химическое консервирование продуктов питания сохранит свое значение и в будущем.

Микробиологическая порча

Пищевые продукты, как правило, быстро портятся. Поэтому приходится использовать их немедленно или, если это невозможно, принимать меры для их сохранения, т.е. консервировать.

В пищевом продукте могут происходить физические, химические, биохимические и микробиологические процессы, отрицательно влияющие на его качество.

Микробиологическая порча пищевых продуктов происходит при наличии определённых условий, необходимых для протекания биологических процессов:

Наличие возбудителей порчи. Микробиологическая порча пищевого продукта невозможна, если на его поверхности или внутри него отсутствуют микроорганизмы.

* Наличие доступных для микроорганизмов питательных веществ. Если таковые отсутствуют, то микроорганизмы не могут развиваться.

* Наличие благоприятных для жизнедеятельности микроорганизмов температуры, активности воды, концентрации кислорода, окислительно-восстановительного потенциала, концентрации ионов водорода (рН). Если эти условия неблагоприятны, микроорганизмы или не будут развиваться, или их развитие будет замедленным.

* Достаточно длительное время хранения пищевого продукта. Если пищевой продукт будет использован до того, как начнётся нежелательный рост микроорганизмов, мероприятия против микробиологической порчи излишни.

О микробиологической порче можно говорить лишь тогда, когда в результате деятельности микроорганизмов качество пищевого продукта ухудшается.

Под порчей пищевого продукта понимают лишь нежелательное изменение его качества. Отсюда следует, что не всякое микробиологическое изменение есть порча. Например, сбраживание виноградного сока дрожжами не является порчей, если целью служит получение вина, и является, если требуется сохранить виноградный сок неизменным. Уксус может образовываться при нежелательном прокисании вина, а может целенаправленно получаться из вина с помощью тех же уксуснокислых бактерий; в первом случае налицо порча, а во втором её нет. Напомним также, что микроорганизмы необходимы для получения таких известных продуктов питания, как хлеб, йогурт и т.д. Иногда ответ на вопрос о том, оценивать ли микробиологическое изменение пищевого продукта как ухудшение его качества или нет, зависит от глубины и направлении этого изменении. Например, процесс созревания сыра может плавно перейти в его порчу, причём точно определить переходный момент зачастую невозможно. Такая неопределённость может иметь юридические последствия, так как во многих странах существуют запреты на поставку в торговлю испорченных продуктов.

консервирование пищевой продукт

Консервирование

Консервирование - это обработка пищевых продуктов для увеличения сроков их хранения. Под консервированием понимается совокупность мер, направленных против различных видов порчи. В более узком смысле под консервированием понимают действия, направленные против микробиологической порчи.

Консервирование ставит своей целью создание таких условий, при которых невозможно развитие микроорганизмов и деятельность ферментов, вызывающих порчу пищевых продуктов. Обязательное условие консервирования - сохранение питательной ценности продукта, его качества и безвредности.

Качество продовольственных товаров является одним из важнейших факторов эффективной экономической деятельности любого предприятия

С развитием цивилизации изменились жизненные привычки и потребности людей, у них появилось желание наслаждаться деликатесами и экзотическими продуктами из дальних стран. Выпускается множество «фирменных» продуктов питания, к сохранности которых предъявляются особенно высокие требования. Во всех этих случаях не обойтись без использования соответствующих приёмов сохранения, т.е. без консервирования.

Хотя консервирование (по крайней мере в развитых странах) достигло высокого уровня, всё ещё поразительно много пищевых продуктов теряется в результате порчи. По некоторым оценкам, более 20% произведённых продуктов не достигают стола потребителя, а достаются грызунам, насекомым и микроорганизмам. В менее развитых странах эти потери намного больше.

Если раньше продукты питания консервировали исключительно по экономическим причинам, то в последнее время добавился и токсикологический аспект. Например, в 60-х годах обнаружилось, что многие плесневые грибы образуют токсины, которые могут попадать в продукты питания. Если ограничить рост плесневых грибов, например, применяя консерванты, то уменьшается и образование токсинов. Поэтому с точки зрения профилактики заболеваний использование безусловно нетоксичных консервантов менее рискованно, чем отказ от них.

Биологические принципы

Исходя из биологических принципов, разработанных проф. Я.Я. Никитским, методы консервирования можно разделить на четыре группы:

· принцип биоза - поддержание жизненных процессов и использование естественного иммунитета живых организмов (предубойное содержание скота, птицы, содержание живой товарной рыбы, хранение плодов и овощей)

· принцип анабиоза - подавление жизнедеятельности микроорганизмов и ферментативных процессов самих продуктов в результате: создания модифицированных и регулируемых газовых сред для хранения свежих плодов и овощей, рыбы - наркоанабиоз; применения пониженных температур выше криоскопической (охлаждение) - психороанабиоз; создания в продукте высокого осмотического давления (консервирование солью, сахаром) - осмоанабиоз; удаление из продукта избытка влаги (сушка) - ксероанабиоз;

· принцип ценоанабиоза - изменение микрофлоры продукта в результате различных внешних воздействий (созревание, квашение, брожение);

· принцип абиоза - прекращение жизнедеятельности микроорганизмов, ферментативных процессов в результате действия высоких температур (термоабиоза), применения антисептиков и других химических веществ (химабиоз);

Методы консервирования

В зависимости от технологической сущности методы консервирования делятся на физические, физико-химические, химические, биохимические, комбинированные.

Выбор и применение методов консервирования пищевых продуктов определяется их влиянием на исходное сырье и качество получаемого консервированного продукта. Все способы консервирования сводятся к уничтожению микробов и разрушению ферментов либо к созданию неблагоприятных условий для их активности.

Физические методы консервирования продуктов

Физические методы основаны на применении высоких и низких температур, ультразвука, ультрафиолетовых и инфракрасных лучей, ионизирующих излучений и др.

Консервирование низкими температурами заключается в подавлении жизнедеятельности микроорганизмов, снижении активности ферментов, замедлении биохимических процессов.

Продовольственные товары являются благоприятной средой для развития микроорганизмов. В зависимости от отношения к температуре микроорганизмы делятся на: термофильные, развивающиеся при 50-70 °С; мезофильные -- при 20--40 °С; психрофильные -- от +10 до --8 "С. К термофилам относятся споровые формы микроорганизмов, споры которых отличаются особой устойчивостью, вследствие чего они могут переносить стерилизацию. К мезофилам относятся многие гнилостные бактерии, вызывающие порчу продовольственных товаров при положительных температурах, а также все патогенные и токсигенные формы бактерий. К консервированию низкими температурами относится охлаждение и замораживание.

Охлаждение -- холодильная обработка продуктов и сырья при температуре, близкой к криоскопической, т. е. к температуре замерзания клеточной жидкости, которая обусловлена составом и концентрацией сухих веществ. Различные продовольственные товары имеют разную криоскопическую температуру. Так, для мяса она находится в пределах от 0 до 4 °С, для рыбы -- от -1 до 5 °С; для молока и молочных продуктов -- от 0 до 8 °С; для картофеля -- от 2 до 4 °С; для яблок-- от 1 до -1 °С.

Охлаждение пищевых продуктов преследует одну общую цель -- понижение их температуры до заданной конечной, при которой задерживаются биохимические процессы и развитие микроорганизмов. Хранение при низких положительных температурах обеспечивает сохранение продовольственных товаров в доброкачественном состоянии достаточно длительное время. Так, мясо, рыба, птица могут сохраняться в течение одной-двух недель, яйца -- несколько месяцев, а некоторые плоды и овощи -- до нового урожая.

Наиболее распространены те промышленные способы охлаждения, которые осуществляются передачей тепла конвекцией, радиацией, теплообменом при фазовом превращении. Охлаждающей средой является воздух, движущийся с различной скоростью. Как правило, охлаждение производится в холодильных камерах, снабженных устройством для распределения охлаждённого воздуха.

Для способов охлаждения, в основе которых лежит конвективный и радиационный теплообмен, характерны невысокие потери продуктом влаги при охлаждении. Это охлаждение продуктов в жидких средах, а также упакованных в непроницаемые оболочки. В жидкой среде охлаждают рыбу, птицу, некоторые овощи; в оболочках и упаковках -- колбасные изделия, полуфабрикаты, кулинарные, кондитерские изделия и др.

Охлаждение -- наилучший способ сохранения пищевой ценности и органолептических свойств товара, но оно не обеспечивает длительного срока хранения. Так, охлажденное молоко и молочные продукты сохраняются 36--72 ч, мясо -- 15-20 сут, рыба -- от 2 до 15 сут. В то же время некоторые плоды и овощи сохраняются до 5--10 мес.

Замораживание -- это процесс понижения температуры продовольственных товаров ниже криоскопической на 10-30°С, сопровождающихся переходом в лед содержащейся в них воды. Замораживание обеспечивает более высокую стойкость при хранении по сравнению с охлаждением, многие замороженные продукты могут храниться до года.

Чем ниже температура (от -30 до -35 °С), тем быстрее скорость замораживания, при этом в клетках и в межклеточном пространстве ткани образуются мелкие кристаллы льда и ткани не повреждаются. При медленном замораживании внутри клетки образуются крупные кристаллы льда, которые повреждают ее, и при размораживании происходит потеря клеточного сока.

Микроорганизмы в зависимости от реакции на отрицательные температуры делятся на чувствительные, умеренно устойчивые и нечувствительные. Особенно чувствительны к отрицательным температурам вегетативные клетки плесневых грибов и дрожжей. Легко погибают грамотрицательные бактерии, принадлежащие родам Psendomonas, Achromobaeter и сальмонеллы. Устойчивы к низким температурам грамположительные микроорганизмы и споровые формы бактерий.

Качество замороженного товара определяется многими факторами: состоянием самого товара, наличием биологически активных веществ, способом, скоростью замораживания, наличием его тары и упаковочного материала и др.

Замораживают продовольственные товары в морозильных аппаратах различных типов (камерного, контактного, туннельного и др.). Высокая эффективность достигается при замораживании мелких или измельченных продуктов россыпью на охлаждающих поверхностях или в «кипящем» слое -- методом флюидизации. При этом обеспечивается высокая скорость подаваемого под давлением холодного воздуха, который омывает со всех сторон взвешенные в потоке продукты.

К сверхбыстрому относится замораживание в кипящих хладоносителях (жидкий азот, фреон и др.).

Консервирование высокими температурами проводят для уничтожения микрофлоры и инактивации ферментов продовольственных товаров. К этим методам относятся пастеризация и стерилизация.

Пастеризацию проводят при температуре ниже 100 °С. При этом сохраняются споры микроорганизмов. Различают пастеризацию короткую (при 85-95 °С в течение 0,5-1 мин) и длительную (при температуре 65 °С в течение 25-30 мин). Пастеризацию в основном применяют для обработки продуктов с высокой кислотностью (молоко, соки, компоты, пиво). При значении рН ниже 4,2 уменьшается термоустойчивость многих микроорганизмов.

Стерилизация -- это нагревание продовольственных товаров при температуре выше 100 °С. При этом микрофлора полностью уничтожается. Стерилизацию используют при производстве консервов в герметичной металлической или стеклянной таре. Режим стерилизации определяется видом товара, временем и температурой. Режим стерилизации консервов с низкой кислотностью должен быть более жестким, чем консервов с высокой кислотностью. Молочная кислота оказывает более угнетающее действие на микроорганизмы, чем лимонная, а лимонная - более угнетающее, чем уксусная. Наличие жира снижает стерилизующий эффект.

Стерилизацию обычно проводят при температуре 100--120 °С в течение 60-120 мин (мясные товары), 40-120 мин (рыбные), 25-60 мин (овощные), 10-20 мин (сгущенное молоко) паром, водой, воздухом, паровоздушной смесью с помощью разнообразного оборудования (ротационного, статического, непрерывно действующего и др.).

При стерилизации снижается пищевая ценность товара, его вкусовые свойства в результате гидролиза белков, жиров, углеводов, разрушения витаминов, некоторых аминокислот и пигментов.

Перспективно применение высокотемпературной кратковременной стерилизации с одновременным уменьшением длительности процесса. В основном эту обработку применяют для мясных и молочных продуктов при температуре 120-125 ?С в течение 35-45 мин в ротационном режиме. При стерилизации консервов токами сверхвысокой и промышленной частот содержимое банки быстро и равномерно прогревается по всему объему, продолжительность процесса сокращается в 5-7 раз. Это также перспективный способ. СВЧ- стерилизация при температуре 130 ?С обеспечивает сохранение в большей степени аминокислот, более высокие перевариваемость белков и органолептические свойства продукта. Такая обработка основана на взаимодействии электромагнитных полей с частотой колебания 1 млрд Гц и выше с дипольными молекулами различных веществ, в первую очередь воды. Пламенная стерилизация в 4-5 раз сокращает время термической обработки по сравнению с автоклавированием. Нагревание банок достигается при вращении их в пламени горелок со скоростью 0,75 с -1 в течение 10 мин.

В связи с внедрением в практику современной системы упаковки продовольственных товаров «вау in box» широкое распространение получило асептическое консервирование. Классический вариант асептического консервирования товаров в системе «вау in box» состоит из трех этапов: стерилизации продукта при температуре 130-150 °С с последующим охлаждением; стерилизации тары радиационной обработкой; фасования стерильного продукта в стерильную тару в асептических условиях. Такая обработка универсальна и применяется для жидких и вязких продуктов (молоко, соки, вина, паста и др.).

Консервирование ионизирующими излучениями называют холодной стерилизацией, или пастеризацией, так как стерилизующий эффект достигается без повышения температуры. Для обработки продовольственных товаров используют б-, в-излучение, рентгеновское излучение, поток ускоренных электронов. Ионизирующая радиация основана па ионизации микроорганизмов, в результате чего они погибают. К консервированию ионизирующими излучениями относится радиационная стерилизация (радаппертизация) продуктов длительного хранения и радуризация пастеризующими дозами.

Облучение продуктов проводят в инертных газах, вакууме, с применением антиокислителей, в условиях низких температур.

Существенным недостатком ионизирующей обработки продуктов является изменение химического состава и органолептических свойств. В промышленности этот метод используется для обработки тары, упаковки, помещений.

Консервирование ультразвуком (более 20 кГц). Ультразвуковые волны обладают большой механической энергией, распространяются в твердых, жидких, газообразных средах, вызывают ряд физических, химических и биологических явлений: инактивацию ферментов, витаминов, токсинов, разрушение одноклеточных и многоклеточных организмов. Поэтому этот метод используют для пастеризации молока, в бродильной и безалкогольной промышленности, для стерилизации консервов.

Облучение ультрафиолетовыми лучами (УФЛ). Это облучение лучами с длиной волны 60-400 нм. Гибель микрофлоры обусловлена адсорбцией УФЛ нуклеиновыми кислотами и нуклеопротеидами, что вызывает их денатурацию. Особенно чувствительны к УФЛ патогенные микроорганизмы и гнилостные бактерии. Пигментные бактерии, дрожжи и их споры устойчивее к УФЛ. Применение УФЛ ограничено из-за низкой проникающей способности (0,1 мм). Поэтому УФЛ применяют для обработки поверхности мясных туш, крупных рыб, колбасных изделий, а также для дезинфекции тары, оборудования, камер холодильников и складских помещений.

Использование обеспложивающих фильтров . Сущность этого метода состоит в механическом отделении товара от возбудителей порчи с использованием фильтров с микроскопическими порами, т. е. процесса ультрафильтрации. Этот способ позволяет максимально сохранить пищевую ценность и органолептические свойства товаров и применяется для обработки молока, пива, соков, вина и других жидких продуктов.

Физико-химические методы консервирования продуктов

К физико-химическим методам консервирования относят сушку, консервирование солью, сахаром.

Сушка - это тепло - и массообменный процесс, в результате которого происходит обезвоживание товара. Влажность большинства продовольственных товаров составляет 40-90%, что обусловливает ограниченный срок их хранения. Способность продуктов к длительному хранению во многом определяется активностью воды, которая имеет термодинамическое значение.

При сушке влажных пористых материалов, какими являются большинство продовольственных товаров, в первую очередь удаляется влага смачивания и капиллярная, испаряющаяся с поверхности материала и из капилляров. Это свободная влага, испарение которой подчиняется законам испарения жидкости со свободной поверхности. Затем происходит испарение адсорбционной влаги, для удаления которой требуется больше энергии. Испарение осмотической влаги происходит на протяжении всего процесса сушки, так как в результате испарения всех видов влаги увеличивается осмотическое давление. Испарение влаги из товара завершается по достижении равновесия между процессами, десорбции (сушки) и сорбции (поглощения) влаги товаром.

В процессе сушки уменьшаются масса и объем продукта, что способствует экономии тары, складских помещений и транспортных средств, а также увеличению энергетической ценности товара по сравнению с исходным сырьем. Сушеные продукты имеют большой срок хранения. Тем не менее при сушке имеет место ряд нежелательных изменений: окисление липидов и витаминов, ухудшение вкусо-ароматических свойств

В настоящее время на предприятиях пищевой промышленности используют различные способы сушки.

При конвективной сушке (нагретым воздухом) удаление влаги осуществляется воздухом температурой 80--120 ?С в сушильных установках. Таким способом сушат плоды, овощи, дрожжи и др.

Распылительная сушка применяется для обезвоживания жидких продуктов, которые распыляются в сушильной камере, куда подается воздух температурой 140-150 ?С. Продолжительность нахождения продукта в камере 5-30 с, при этом полностью сохраняются белки и витамины. Распылительную сушку применяют при производстве сухих молочных продуктов, яичного белка, фруктовых и овощных порошков и др.

Кондуктивная (контактная) сушка осуществляется при непосредственном контакте влажного продукта с нагретой поверхностью. Недостатком этого способа является то, что при контакте с нагретой поверхностью происходит денатурация белков.

Одной из разновидностей кондуктивного способа является сублимационная сушка , которая основана на удалении влаги из замороженных продуктов путем возгонки (сублимации) воды, т. е. непосредственного перехода льда в пар, минуя жидкую фазу, в условиях глубокого вакуума. На первой стадии происходит быстрое замораживание продукта до температуры не выше -17 ?С в течение 15-20 мин с удалением 10-15% льда. На второй стадии происходит обезвоживание продуктов в результате нагрева плит, на которых они находятся. При этом продукт теряет до 80% влаги. Продолжительность процесса сублимации 10-20 ч. На третьей стадии происходит тепловая вакуумная сушка, в результате которой удаляется адсорбционно-связанная влага в течение 3-4 ч до остаточной влажности продукта 3-6%.

При сублимационной сушке максимально сохраняются химический состав, пищевая ценность, органолептические свойства продукта, а срок хранения продукта может быть увеличен до 3 лет. Сублимационную сушку применяют для обезвоживания продуктов растительного и животного происхождения.

Радиационная сушк а основывается на переносе тепла от источника энергии путем электромагнитных колебаний через среду, прозрачную для теплового излучения. Облучение как промышленный способ обработки пищевого сырья применяют более чем в 20 странах. Достоинством радиационной обработки является подавление жизнедеятельности многих видов гнилостной микрофлоры и насекомых-вредителей при относительно низких дозах облучения.

Оптимизация процесса термообработки продукта связана с использованием инфракрасных лучей (ИКЛ). Особенность обработки продукта ИКЛ -- создание высокого градиента влажности за счет быстрого уменьшения содержания влаги поверхностных слоев. Перспективно использование керамических материалов в качестве преобразователей ИКЛ.

Консервирование поваренной солью и сахаром . Метод основан на увеличении концентрации сухих веществ в продукте при повышении осмотического давления, что ведет к плазмолизу, клеток и гибели микроорганизмов. Необходимый эффект достигается при концентрации сахара 60-65%. Аналогичное действие оказывает поваренная соль в концентрации 10-20%.

Химические методы консервирования продуктов

Для консервирования используют так же различные химические вещества, разрешенные органами здравоохранения - этиловый спирт, уксусную, сернистую, сорбиновую, бензойную, борную кислоты обладающие антимикробным действием.

Консервирование этиловым спиртом используется при производстве плодово-ягодных соков-полуфабрикатов. При концентрации этилового спирта 12-16% задерживается развитие, а при 18% подавляется жизнедеятельность микрофлоры. Спиртованные соки (25-30%) применяют в производстве ликеро-водочных изделий.

Маринование -- повышение кислотности среды при добавлении уксусной кислоты, которая в концентрации 1,2--1,8% подавляет деятельность микроорганизмов, в первую очередь гнилостных. Обычно маринование комбинируют с другими способами консервирования: квашением, солением, пастеризацией. Маринуют плоды, овощи, грибы, рыбу и др.

Консервирование кислотами (антисептиками). Антисептиками называются химические вещества, которые губительно действуют на микроорганизмы. Проникая в живые клетки, эти вещества взаимодействуют с белками протоплазмы, парализуя при этом жизненные функции, что приводит к гибели микроорганизмов.

Консервирование продуктов сернистой кислотой, ее солями, сернистым ангидридом называется сульфатацией. Сернистая кислота подавляет жизнедеятельность плесеней и бактерий; более устойчивы дрожжи. Эту кислоту применяют для консервирования плодов, ягод, овощей, их полуфабрикатов. Остаточное содержание сернистого ангидрида в сушеных плодах и овощах не должно превышать 0,01-0,06%; в плодово-ягодном пюре -0,2; в соках -0,12-0,15%.

Бензойная кислота (С6Н5СООН) и ее натриевая соль при концентрации 0,05-0,1% при рН 2,5-3 подавляют действие дрожжей и плесеней; бактерии более устойчивы. Количество бензойной кислоты в продукте не должно превышать 70-100 мг/100 г. Используют для консервирования плодоовощной, рыбной продукции.

Сорбиновая кислота (С6Н802) и ее соли являются сильными антисептиками и используются для консервирования соков, пюре, маринадов, других продуктов с низким значением рН среды. Эта кислота и сорбаты подавляют жизнедеятельность дрожжей и плесеней, но не действуют на бактерии. Количество этих веществ не одинаково для различных продуктов: от 0,05% - в безалкогольных напитках до 0,5% - в полукопченых колбасах.

Консервирование антибиотиками. Так же как и антисептики, антибиотики обладают бактерицидным действием. Антибиотики, используемые в пищевой промышленности, должны легко инактивироваться при тепловой обработке продукта. В настоящее время используют: биомицин (хлортетрациклин), действующий на слизеобразующие микроорганизмы, применяют для обработки мяса и рыбы, а также льда для охлаждения рыбы; нистатин, действующий на дрожжи и грибы, вызывающие плесневение мяса; низин, задерживающий рост стафилококков, стрептококков, клостридий и других патогенных микроорганизмов, используют при производстве молочных и плодоовощных консервов.

Консервирование газами . Сущность метода заключается в изменении соотношения кислорода и углекислого газа, в результате чего подавляются жизнедеятельность и развитие микроорганизмов, а также замедляются ферментативные процессы в самих продуктах. Задержка развития плесеней происходит при концентрации СО2 около 20%, при 40-50% СО2 их рост практически прекращается. Бактерии более устойчивы к СО2. Более эффективно использование газовых сред в сочетании с холодильной обработкой пищевых продуктов, причем сроки хранения при этом увеличиваются в 2-3 раза.

Различают регулируемые и модифицированные газовые среды. Консервирование газовыми средами широко используют для плодов, овощей, рыбы, мяса, птицы, колбасных изделий.

Озонирование -- это обработка продуктов и помещений озоном, обладающим дезинфицирующим и дезодорирующим действием. В качестве сильного окислителя озон прекращает развитие бактерий, плесеней, их спор как на поверхности продукта, так и в воздухе. Для обработки пищевых продуктов (мяса, колбас, сыров) концентрация озона не должна превышать 10 мг/м 3 . При озонировании холодильных камер, тары и оборудования концентрация озона должна быть высокой - 25-40 мг/м 3 в течение 12-48 ч, что позволяет снизить зараженность на 90%.

Биохимические методы консервирования продуктов

К этим методам относится консервирование продуктов молочной кислотой и этиловым спиртом, которые образуются в результате молочнокислого и спиртового брожения.

Брожение -- это метаболический анаэробный процесс, при котором регенерируется АТФ, а продукты расщепления органического субстрата служат одновременно и донором, и акцептором водорода. По определению Л. Пастера, брожение -- это жизнь без воздуха.

На молочнокислом брожении основано квашение плодов и овощей. Термин «квашение» обычно используют применительно к капусте, «соленые» - к огурцам и томатам, «моченые» -к яблокам и ягодам.

Под действием молочнокислых бактерий углеводы преобразуются в молочную кислоту, которая придает специфический вкус готовому продукту. Молочная кислота в концентрации 0,5% тормозит развитие многих микроорганизмов. По достижении ее концентрации 1-2% действие молочных бактерий прекращается. Одновременно с молочнокислым протекает спиртовое брожение. Концентрация этилового спирта достигает в квашеной капусте и соленых огурцах 0,5-0,7%, в моченых яблоках - 0,8-1,8%.

При посоле и квашении используют поваренную соль в количестве 2-3%, которая вызывает плазмолиз растительных клеток, стимулируя процесс брожения, а также подавляюще действует на маслянокислые и другие бактерии.

Этиловый спирт образуется в результате спиртового брожения при сбраживании углеводов дрожжами. Спиртовое брожение используется в производстве вина. В виноградном и плодово-ягодном сусле углеводы находятся в доступном для брожения виде, т. е. содержат глюкозу и фруктозу, которые без предварительного гидролиза сбраживаются дрожжами. При содержании спирта в алкогольных напитках 10-20% развитие микроорганизмов подавляется, а при более высоких концентрациях спирта они погибают.

Комбинированные методы консервирования продуктов

При комбинированных методах используют консервирующее действие нескольких факторов.

Копчение -- это способ консервирования соленого полуфабриката веществами неполного сгорания древесины, содержащимися в дыме или коптильных препаратах. Копчение используют для получения мясных копченостей, обработки рыбы, колбасных изделий и другой продукции.

В формировании, потребительских свойств копченой продукции наиболее важная роль принадлежит трем группам органических соединений: фенолам, карбонильным соединениям и органическим кислотам. Фенольные соединения (гваякол, метилгваякол, эвгенол и др.) способствуют формированию вкуса и аромата копченостей. Карбонильные соединения (формальдегид, фурфурол, гликолевый альдегид, метилглиоксаль) отчасти усиливают аромат копчености и формируют окраску продукта. Механизм цветообразования представлен рядом неферментативных реакций, подобных реакции Майара (меланоидинообразование). Летучие кислоты играют вспомогательную роль, способствуя в комплексе с фенолами и карбонильными соединениями образованию вкусовых и ароматических свойств товара. Консервирующий эффект обусловливают фенолы и фурфурол.

Альдегиды и спирты обладают асептическим действием, способствуют гибели поверхностной микрофлоры.

В процессе обработки помимо веществ, придающих эффект копчености, в продукт переходят нежелательные химические вещества, обладающие канцерогенными свойствами. К таким веществам относятся полуциклические ароматические углеводороды (ПАУ) и нитрозамины (НА). ПАУ образуются в дыме.из термических генерируемых радикалов метилена и накапливаются на поверхности продукта при копчении. Концентрация ПАУ в копченых продуктах составляет от 1 до 58 мкг/кг. Уровень бензпирена в копченых рыбопродуктах выше, чем в изделиях из мяса. Особенно велика концентрация бензпирена в рыбе горячего копчения. Кроме бензпирена в копченых продуктах обнаружено 18 ПАУ.

Канцерогенным действием обладает свободный формальдегид, допускаемая норма содержания которого в пищевых продуктах составляет 50 мг/кг.

Способы копчения подразделяют в зависимости от следующих факторов:

температура копчения : холодное (не выше 40 °С), полугорячее (50-80 °С), горячее (80-180 °С); способ применения продуктов разложения древесины : дымовое, бездымное (мокрое) и смешанное.

При дымовом копчении полуфабрикат пропитывается веществами, выделяющимися при неполном сгорании древесины, находящимися в состоянии аэрозоля (дым). Бездымное копчение осуществляется продуктами сухой перегонки древесины в виде растворов (коптильная жидкость). Смешанное копчение представляет собой сочетание дымового и бездымного способов, т. е. последовательная обработка полуфабриката продуктами разложения древесины, находящимися в жидком или газообразном состояниях; условия осаждения продуктов неполного сгорания древесины на поверхности полуфабрикатов и проникновения их вглубь: естественное (без применения специальных приемов) и искусственное (использование токов высокой частоты, инфракрасных лучей, электрокопчение), комбинированное (сочетание естественного и искусственного копчения). Электрокопчение (при температуре не выше 100°С) основано на осаждении продуктов неполного сгорания древесины в электрическом поле высокого напряжения постоянного тока. Электрокопчение применяют для получения свинокопченостей, рыбы горячего и холодного копчения, колбасных изделий и др.

Вяление - это метод комбинированного воздействия поваренной солью и подсушиванием продукта до частичного удаления влаги, достаточного для подавления микрофлоры. В основном вялят мясные и рыбные продукты. Вяленые продукты наряду с многими другими относятся к продуктам с промежуточной влажностью, так как они находятся в состоянии равновесия с относительной влажностью 60-85%. Влажность таких продуктов 15-40%. Они хорошо сохраняются без дополнительной термической обработки, имеют мягкую консистенцию и пригодны для употребления непосредственно в пищу.

Концентрирование - применяется при изготовлении сгущенных молочных консервов, концентрированных соков, томато-продуктов. Этот метод заключается в концентрировании сухих веществ за счет частичного удаления влаги. Кроме того, консервирующее действие оказывают добавление сахара, пастеризация или стерилизация, за счет чего концентрированные продовольственные товары сохраняются при температуре 0-15?С до года и более.

Презервирование - представляет собой метод изготовления особого вида консервированных пищевых продуктов -- презервов. Последние представляют собой нестерилизованный продукт, помещенный в герметизированную жестяную тару (банку). Консервирующий эффект в презервах достигается за счет совместного комбинированного действия с другими консервирующими факторами -- солением, маринованием, действием фитонцидов пряностей и др. Таким образом, презервы относятся к продуктам комбинированного консервирования. Презервы являются продуктами ограниченного срока хранения и быстрой реализации. Хранение презервов должно производиться в условиях небольшого охлаждения (6-8°).

Консерванты

Консерванты относятся к веществам, способствующим увеличению срока годности продуктов.

Современные условия жизни диктуют необходимость применения целого ряда химических соединений, способных эффективно предупреждать развитие микробиальной флоры -- главным образом бактерий, плесени, дрожжей, среди которых могут быть как патогенные, так и непатогенные виды.

Под консервантами понимают вещества, увеличивающие срок хранения пищевых продуктов и защищающие их от порчи, вызванной микроорганизмами.

Химические консерванты должны обеспечивать длительное хранение продуктов, не оказывая какого-либо отрицательного влияния на его органолептические свойства, пищевую ценность и здоровье потребителя. Эффективность действия консерванта зависит от его концентрации, рН, качественного состава микрофлоры. Ни один из известных консервантов не является универсальным для всех продуктов питания. Каждый консервант имеет свой спектр действия.

Аскорбиновая кислота. Антимикробное действие консервантов усиливается в присутствии аскорбиновой кислоты. Консерванты могут оказывать бактерицидное (уничтожать, убивать микроорганизмы) или бактериостатическое (останавливать, замедлять рост и размножение микроорганизмов) действие.

Одним из основных признаков гигиенического регламентирования химических консервантов является их использование в концентрациях, минимальных для достижения технологического эффекта.

Применение антимикробных веществ в более низких дозах может способствовать размножению микроорганизмов. Это необходимо учитывать при разработке санитарных правил и норм для пищевых добавок и их практическом применении.

Соединения серы. К широко распространенным консервантам относятся такие соединения серы, как сульфит натрия безводный (Na2S03) или его гидратная форма (Na2S03 7H20), метабисуль-фат (тиосульфат) натрия кислый (Na2S203), или гидросульфит натрия (NaHS03). Они хорошо растворимы в воде и выделяют сернистый ангидрид (S03), которым и обусловлено их антимикробное действие. Сернистый ангидрид и выделяющие его вещества подавляют главным образом рост плесневых грибов, дрожжей и аэробных бактерий. В кислой среде этот эффект усиливается. В меньшей степени соединения серы оказывают влияние на анаэробную микрофлору. Сернистый ангидрид обладает высокой восстанавливающей способностью, так как он легко окисляется. Благодаря этим свойствам соединения серы являются сильными ингибиторами дегидрогеназ, предохраняя картофель, овощи и фрукты от неферментативного потемнения. Сернистый ангидрид относительно легко уходит из продукта при нагревании или длительном контакте с воздухом. Вместе с тем он способен разрушать тиамин и биотин и усиливать окислительный распад токоферола (витамина Е). Соединения серы нецелесообразно использовать для консервирования продуктов питания, являющихся источником этих витаминов.

Попадая в организм человека, сульфиты превращаются в сульфаты, которые хорошо выводятся с мочой и фекалиями. Вместе с тем большая концентрация соединений серы, например однократное пероральное введение 4 г сульфита натрия, может вызвать токсические явления. Уровень приемлемого суточного потребления (ПСП) сернистого ангидрида, установленный ОКЭПД ФАО/ ВОЗ, составляет 0,7 мг на 1 кг массы тела человека. Ежедневное потребление сульфитированных продуктов питания может привести к превышению допустимой суточной дозы. Так, с одним стаканом сока в организм человека вводится примерно 1,2 мг сернистого ангидрида, 200 г мармелада, зефира или пастилы - 4 мг, 200 мл вина - 40...80 мг.

Сорбиновая кислота. Она обладает главным образом фунгицидным действием благодаря способности ингибировать дегидрогеназы и не подавляет рост молочнокислой флоры, поэтому используется обычно в комплексе с другими консервантами, в основном с сернистым ангидридом, бензойной кислотой, нитритом натрия. Широко применяются соли сорбиновой кислоты.

Антимикробные свойства сорбиновой кислоты мало зависят от величины рН, поэтому она широко используется при консервировании фруктовых, овощных, яичных, мучных изделий, мясных, рыбных продуктов, маргарина, сыров, вина.

Сорбиновая кислота -- вещество малотоксичное, в организме человека она легко метаболизируется с образованием уксусной и в-оксимасляной кислот.

Бензойная кислота. Антимикробное действие бензойной кислоты (С7Н602) и ее солей -- бензоатов (C7H505Na и др.) основано на способности подавлять активность ферментов. В частности, при ингибировании каталазы и пероксидазы накапливается пероксид водорода, угнетающий деятельность микробной клетки. Бензойная кислота способна блокировать сукцинатдегидрогеназу и липазу -- ферменты, расщепляющие жиры и крахмал. Она подавляет рост дрожжей и бактерий маслянокислого брожения, слабо действует на бактерии уксуснокислого брожения и совсем незначительно -- на молочнокислую флору и плесени.

В качестве консервантов применяют также n-оксибензойную кислоту и ее эфиры (метиловый, этиловый, n-пропиловый,). Однако их консервирующие свойства менее выражены, возможно отрицательное влияние на органолептические свойства продукта.

Бензойная кислота практически не накапливается в организме человека. Она входит в состав некоторых плодов и ягод как природное соединение; эфиры n-оксибензойной кислоты -- в состав растительных алкалоидов и пигментов. В небольших концентрациях бензойная кислота образует с гликолом гиппуровую кислоту и полностью выделяется с мочой. В больших концентрациях возможно проявление токсических свойств бензойной кислоты. Допустимая суточная доза составляет 5 мг на 1 кг массы тела человека.

Борная кислота. Борная кислота (Н3ВО3) и бораты обладают способностью накапливаться в организме человека, главным образом в мозге и нервных тканях, проявляя высокую токсичность. Они снижают потребление тканями кислорода, синтез аммиака и окисление адреналина. В этой связи в нашей стране эти вещества не применяются.

Пероксид водорода. В ряде стран при консервировании молока, предназначенного для изготовления сыров, используется пероксид водорода (Н2О2). В готовом продукте он должен отсутствовать. Каталаза молока его расщепляет.

В нашей стране пероксид водорода применяется для обесцвечивания боенской крови. Дополнительно вносят каталазу для удаления остатков пероксида водорода. Каталаза применяется при изготовлении кореньев для различных полуфабрикатов.

Гексаметилентетрамин, или уротропин, гексалин. Действующим началом этих соединений является формальдегид (СН2О). В нашей стране гексамин (C6H12N4) разрешен для консервирования икры лососевых рыб и выращивания маточных культур дрожжей. Его содержание в зернистой икре составляет 100 мг на 1 кг продукта. В готовых дрожжах содержание гексалина не допускается.

Допустимая суточная доза, установленная ВОЗ, составляет не более 0,15 мг на 1 кг массы тела человека.

За рубежом гексаметилентетрамин используется при консервировании колбасных оболочек и холодных маринадов для рыбной продукции.

Дифенил, бифенил. Циклические соединения, труднорастворимые в воде, обладают сильными фунгицидными свойствами, препятствующими развитию плесневых и других грибов.

Вещество применяется для продления срока хранения цитрусовых путем их погружения на непродолжительное время в 0,5...2%-ный раствор или пропитывания этим раствором оберточной бумаги. В нашей стране эти консерванты не применяются, однако реализация импортируемых цитрусовых плодов с использованием данного консерванта разрешена.

Рассматриваемые соединения обладают средней степенью токсичности. При попадании в организм из него выводится около 60 % дифенилов.

Допустимая суточная доза согласно рекомендациям ВОЗ составляет для дифенила 0,05 на 1 кг массы тела человека. В разных странах допускается различный уровень остаточного содержания дифенилов в цитрусовых -- 20... 110 мг на 1 кг массы тела человека. Рекомендуется тщательно мыть цитрусовые плоды и вымачивать их корочки, если они используются в питании.

В Российской Федерации органические кислоты (муравьиная, пропионовая, салициловая и др.) используются только для консервирования грубых кормов сельскохозяйственных животных.

Муравьиная кислота. По своей органической структуре муравьиная кислота (НСООН) относится к жирным кислотам и обладает сильным антимикробным действием. В небольших количествах муравьиная кислота встречается в растительных и животных организмах.

При больших концентрациях она оказывает токсическое действие, в пищевых продуктах обладает способностью осаждать пектины, поэтому в целом она ограниченно используется в качестве консерванта.

В нашей стране в качестве солезаменителей в диетическом питании применяются соли муравьиной кислоты -- формиаты.

Для муравьиной кислоты и ее солей ДСД не должна превышать 0,5 мг на 1 кг массы тела человека.

Пропионовая кислота. Так же как и муравьиная, пропионовая кислота (С2Н5СООН) широко распространена в живой природе, являясь промежуточным звеном цикла Кребса, обеспечивающего биологическое окисление белков, жиров и углеводов.

В США пропионовая кислота применяется в качестве консерванта при производстве хлебобулочных и кондитерских изделий, предупреждая их плесневение. В ряде европейских стран она добавляется в муку.

Соли пропионовой кислоты, в частности пропионат натрия, малотоксичны. Суточная доза последнего в количестве 6 г не вызывает каких-либо отрицательных явлений, в связи с чем ОКЭПД ВОЗ она не установлена.

Салициловая кислота. Вещество традиционно используется при домашнем консервировании томатов и фруктовых компотов. В Великобритании соли салициловой кислоты -- салицилаты -- применяются для консервирования пива. Наиболее высокие антимикробные свойства салициловой кислоты проявляются в кислой среде.

В настоящее время установлена токсичность салициловой кислоты и ее солей, поэтому использование салициловой кислоты в России в качестве пищевой добавки запрещено.

Диэтиловый эфир пироугольной кислоты. Он может подавлять рост дрожжей, молочнокислых бактерий и в меньшей степени плесеней и в отдельных странах используется для консервирования напитков. Вещество обладает запахом фруктов. При концентрации более 150 мг вещества на 1 кг изделия ухудшаются вкусовые качества напитков и проявляются его токсические свойства.

Подобные документы

    Моно- и олигосахариды как компоненты пищи и пищевого сырья. Основные физические и химические методы консервирования. Консерванты, разрешенные в Европейском Союзе для применения в пищевых продуктах. Пищевое значение полисахаридов первого порядка.

    контрольная работа , добавлен 30.01.2013

    Основные принципы консервирования: биоз, анабиоз, биоз. Физические (пастеризация и стерилизация), химические (посол, маринование, копчение, обработка сырья и продуктов антисептиками) и биохимические способы (применение биологически активных веществ).

    презентация , добавлен 29.07.2013

    Классификация переработанных плодов и овощей по методам консервирования. Влияние методов консервирования на пищевую ценность и сохраняемость продуктов переработки. Сравнительная характеристика натурального кофе и его заменителей по ряду свойств.

    реферат , добавлен 09.02.2011

    Определение понятия и технологической сущности консервирования продуктов. Описание основных физико-химических методов консервации. Ознакомление с основами производства пробиотических продуктов питания. Эффект живых микроорганизмов на здоровье человека.

    контрольная работа , добавлен 04.02.2015

    Методы определения действительных значений показателей качества с помощью технических устройств. Установление химического состава, физико-химических показателей, доброкачественности, товароведно-технических, физических и других свойств пищевых продуктов.

    курсовая работа , добавлен 29.07.2012

    Основные методы изготовления консервов. Холодильная и термическая обработка, стерилизация пищевых продуктов. Биологические методы консервирования. Квашение капусты, соление огурцов. Маринование, спиртование, спиртовое брожение. Способы посола мяса и рыбы.

    курсовая работа , добавлен 28.12.2011

    Сущность консервирования хлеба в мягкой упаковке с применением тепловой стерилизации. Популярность замороженного хлеба. Стерилизация печеного хлеба гамма-излучением и электронами высокой энергии. Роль макаронных изделий в рационе питания их хранение.

    реферат , добавлен 20.10.2012

    Основные способы консервирования ягод и косточковых плодов. Стерилизация сухим жаром. Стерилизация пищевых продуктов и лекарственных препаратов. Поведение бактерий при пастеризации. Определенные частоты ультразвука при искусственном воздействии.

    реферат , добавлен 30.09.2013

    Способы консервирования пищевых продуктов и сырья, их разновидности, оценка преимуществ и недостатков каждого из них. Ассортимент рыбных консервов и презервов, требования к их качеству. Органолептическая оценка качества пива, критерии и параметры.

    контрольная работа , добавлен 10.06.2011

    Основные биохимические процессы, протекающие при выработке кисломолочных продуктов. Характеристика процессов молочнокислого и спиртового брожения молочного сахара, протеолиза, коагуляции казеина и гелеобразования. Биотехнология в переработке молока.

Методы консервирования продуктов. Баночные консервы.

Методы консервирования продуктов. Консервами называют продукты растительного и животного происхождения, подвергнутые специальной обработке и герметически укупоренные в банках. Консервирование используют с целью длительного сохранения пищевых продуктов, что позволяет использовать консервы для обеспечения населения, прежде всего, сезонными продуктами, имеющими большое значение в питании человека – овощами, фруктами, ягодами. Кроме того, применение консервов значительно расширяет ассортимент пищевой продукции, используемой в питании, а также позволяет оздоровить питание населения, проживающего в труднодоступных районах. Консервированные продукты используются также для создания резерва продовольствия в стране и снабжения населения и войск в военное время.

Для консервирования используют разнообразные методы: физические, химические, биологические. Одни из них позволяют уничтожить микроорганизмы и разрушить ферменты, способствующие порче продукта. Другие – лишь приостанавливают развитие микроорганизмов и действие ферментов.

Перед любым способом консервирования проводят сортировку, мытье и очистку продукта от несъедобных частей. Наиболее распространенным фактором, используемым в консервировании, является высокая температура. К основным методам такого консервирования относятся стерилизация и пастеризация. При стерилизации происходит полное уничтожение как вегетативных форм микроорганизмов, так и их спор. Обработанные по технологии пищевые продукты укладывают в банки, герметически укупоривают, а затем стерилизуют в автоклаве при tº 112-120ºС в течение 20-120 минут в зависимости от вида продукта. Мясо и мясные продукты требуют более длительной обработки, чем рыба и овощи. Недостатком метода является определенное снижение пищевой ценности продукта вследствие частичного расщепления крахмала и сахаров, разрушения части витаминов и др.

В последние годы активно внедряется новый высокотемпературный метод консервирования – асептическое консервирование. При асептическом консервировании вначале в течение очень короткого времени (1-2 мин.) стерилизуется не укупоренный продукт, затем он охлаждается и помещается в стерильную упаковку. Такой способ консервирования позволяет избежать значительного снижения пищевой и биологической ценности продукта.


Таблица 8.13.

Витамины овощей и бахчевых

Овощи и бахчевые β- каро-тин, мг Е, мг С, мг В 6, мг Биотин, мкг Ниацин, мг Пантотеновая кислота, мг Рибофла-вин,мг Тиамин, мг Фолацин, мкг
Перец красный сладкий 2,00 0,67 0,50 - 1,00 - 0,08 0,10
Петрушка (зелень) 5,0 1,80 0,18 0,40 0,70 0,05 0,05 0,05
Редис сл. - 0,10 - 0,10 0,18 0,0 0,01 6,0
Салат 1,75 0,66 0,18 0,70 0,65 0,10 0,08 0,03
Свекла 0,01 0,14 0,07 сл. 0,20 0,12 0,04 0,02
Томаты грунтовые 1,20 0,39 0,10 1,20 0,53 0,25 0,04 0,06
Укроп 1,0 - 0,15 - 0,60 0,25 0,10 0,03
Чеснок сл. - 0,60 - 1,20 - 0,08 0,08 -
Капуста белокочанная ранняя 0,06 0,10 0,10 - 0,34 - 0,07 0,02
Капуста белокочанная поздняя сл. 0,06 0,14 0,10 0,74 0,18 0,04 0,03
Картофель 0,02 0,10 0,30 0,10 1,30 0,30 0,07 0,12
Лук-перо 2,0 1,0 0,15 0,90 0,30 0,13 0,10 0,02
Лук репчатый сл. 0,20 0,12 0,90 0,20 0,10 0,02 0,05
Морковь 9,00 0,63 0,13 0,60 1,00 0,26 0,07 0,06
Огурцы грунтовые 0,06 0,10 0,04 0,90 0,20 0,27 0,04 0,03
Арбуз 0,10 - 0,09 - 0,24 - 0,03 0,04 8,0
Земляника садовая 0,03 0,54 0,06 4,00 0,30 0,18 0,05 0,03 10,0
Крыжовник 0,20 0,56 0,03 - 0,25 - 0,02 0,01 5,0
Виноград Сл. - 0,09 1,50 0,30 0,06 0,02- 0,05 4,0
Вишня 0,10 0,32 0,05 0,40 0,40 0,08 0,03 0,03 6,0
Слива 0,10 0,63 0,08 Сл. 0,60 0,15 0,04 0,06 1,5
Малина 0,20 0,58 0,07 1,90 0,60 0,20 0,05 0,02 6,0
Шиповник 2,60 1,71 - - 0,60 - 0,33 0,05 -
Яблоки зимние 0,03 0,63 0,08 0,30 0,30 0,07 0,02 0,03 2,0
Смородина черная 0,10 0,72 0,13 2,40 0,30 0,40 0,04 0,03 5,0

Высокая температура является действующим фактором и при стерилизации токами ультравысокой и сверхвысокой частоты. За счет теплового эффекта, вызываемого передачей энергии излучения молекулам тканей, весь продукт нагревается равномерно до 100 ºС и выше. Вследствие этого обеспечивается более быстрое достижение бактерицидного эффекта.

К другим методам стерилизации относятся стерилизация ультразвуком и ионизирующей радиацией. При стерилизации ультразвуком (частота более 20 кГц) достигается хорошая сохранность витаминов и вкусовых качеств продукта. Стерилизацию ионизирующей радиацией широко не применяют, так как высока опасность облучения для работников, а также вследствие высокоэнергетического воздействия в продуктах появляются белки с антигенными свойствами, происходит деполимеризация углеводов, накапливаются продукты, способные оказать токсическое действие и провоцировать развитие опухолей – перекиси, свободные радикалы, кетоны, альдегиды.

Пастеризация используется для предохранения от порчи пищевых продуктов, не выдерживающих интенсивного нагревания. Метод был предложен Л.Пастером, по имени которого он и назван. Пастеризации подвергают в основном молоко, вино, пиво и другие жидкие продукты. Используют несколько способов пастеризации: низкую, высокую, многократную (дробную). Низкая пастеризация проводится при tº 65ºС в течение 20 мин, высокая - при tº 90-100ºС в течение 1 минуты, дробная – 2-4 раза с промежутком в 24 часа. При пастеризации погибают только вегетативные формы микроорганизмов, а споры остаются жизнеспособными. Поэтому такие продукты нужно хранить при низкой температуре и непродолжительное время. Пастеризация позволяет почти полностью сохранить вкусовые качества продукта, его пищевую и биологическую ценность. При дробной пастеризации удлиняется срок хранения, но происходит более интенсивное разрушение витаминов и других биологически активных соединений.



Для консервирования продуктов, особенно мяса, рыбы, мясных и рыбных продуктов, ягод, плодов, овощей одними из лучших методов являются охлаждение и замораживание, так как они обеспечивают сохранность почти всех органолептических свойств и пищевой и биологической ценности продуктов.

При охлаждении в холодильных камерах до 0-2ºС задерживается развитие микроорганизмов и снижается интенсивность аутолитических процессов. При замораживании (tº-18-25ºС) жизнедеятельность микроорганизмов прекращается (хотя они полностью не отмирают) и инактивируются ферменты. В замороженном виде продукты хранятся от нескольких месяцев до года и более.

К физическим способам консервирования относится также сушка , при которой вследствие удаления воды создаются неблагоприятные условия для развития большинства микроорганизмов. Существуют различные способы сушки. Широко применяется старейший из них - естественная сушка фруктов и ягод на солнце. Искусственная сушка проводится различными методами. Раньше проводили сушку горячим воздухом в сушилках, при этом большинство витаминов и, в особенности вит. С., из-за длительного воздействия высоких температур полностью разрушалось. В настоящее время используют более оптимальные, позволяющие снизить потери витаминов и сохранить высокие вкусовые качества, способы искусственного высушивания продуктов: распылительную, вакуумную и сублимационную сушку. При распылительной сушке продукт распыляется в сушилке, что ускоряет время его высушивания. Вакуумная сушка позволяет проводить высушивание при более низкой температуре. При сублимационной сушке влага льда испаряется, минуя водную фазу, в связи с чем основные пищевые вещества, в том числе, витамины, испытывают меньшее повреждающее воздействие. В консервировании используют и химические способы : соление, маринование, засахаривание, применение антисептиков. Гипертонические растворы соли (15-20%) и высокие концентрации сахара (60-70%) резко повышают осмотическое давление, вследствие чего происходит обезвоживание продукта и микробных тел. Большинство патогенных и условно-патогенных микроорганизмов погибают уже при концентрации поваренной соли 10%, однако некоторые микроорганизмы остаются живыми и при более высоких концентрациях, угнетается лишь их развитие. Устойчивы к солению и споры анаэробных микробов, хотя их прорастание тормозится при концентрации соли более 8%. При солении микробы отмирают очень медленно, а уже имеющиеся в продукте токсины не разрушаются. Существенным недостатком соления является снижение пищевой и биологической ценности продукта вследствие перехода части белков, минеральных веществ и витаминов в солевой раствор.

Маринование продуктов производят, используя для консервирования 1,5-2% раствор уксусной кислоты. Маринуют в основном овощи, фрукты, рыбу, мясо. Под действием уксусной кислоты патогенная флора не погибает, тормозится лишь ее развитие.

Для консервирования антисептиками используют такие соединения, как сернистый ангидрид, сернистую кислоту и ее соли, сорбиновую, бензойную кислоты, нитраты и нитриты калия, антиокислители и др. Все они относятся к группе так называемых пищевых добавок. Консервирующее действие соединений серы обусловлено сернистым ангидридом, выделяющимся из них и подавляющим рост плесневых грибов, дрожжей и аэробной микрофлоры.

Сорбиновая кислота обладает в основном фунгистатическим действием и широко используется при консервировании фруктовых, овощных, яичных, мучных изделий, мясных и рыбных продуктов, маргаринов, сыров, вина.

Бензойная кислота подавляет рост дрожжей и бактерий маслянокислого брожения, но не действует на плесени, молочнокислую флору и бактерии уксуснокислого брожения. Гексаметилентетрамин используется для консервирования икры лососевых рыб и выращивания культур дрожжей. Консервирующие свойства обусловлены формальдегидом, образующимся при окислении гексаметилентетрамина. Дифенил, бифенил, о-фенилфенол оказывают фунгистатическое действие и используются за рубежом для обеспечения сохранности цитрусовых. Нитраты и нитриты натрия и калия используются как антимикробные средства в производстве мясных и молочных продуктов. Антиокислители используются для предупреждения окисления пищевых компонентов, происходящего под влиянием кислорода воздуха, света, температуры, технологических факторов и приводящего к снижению пищевой ценности продуктов и непригодности их к использованию вследствие образования при окислении токсичных промежуточных и конечных веществ. Наиболее подвержены окислению липиды и их соединения, а также витамины. Для стабилизации жиров, пищевых и кормовых продуктов используются как природные (токоферолы, аскорбиновая кислота, кверцетин,эфиры галловой кислоты, гваяковая кислота и др.), так и синтетические (бутилоксианизол –БОА, бутилокситолуол –БОТ, сантохон, дилудин, дибуг и др.) антиоксиданты.

При избыточном поступлении антисептиков в организм человека возможно развитие тех или иных токсических эффектов, поэтому содержание этих веществ в продуктах нормируется.

К биологическим способам консервирования относится квашение, при котором за счет сбраживания молочно-кислыми бактериями сахаров, входящих в состав овощей и фруктов, образуется молочная кислота. При концентрации ее 0,7% и выше погибает патогенная неспороносная микрофлора и яйца гельминтов. В заквашенных овощах благодаря кислой среде хорошо сохраняется вит.С.

Для консервирования используются не только отдельные консерванты, но и их комбинация. К видам комбинированного консервирования относятся копчение, пресервирование, вяление. При копчении антисептическое действие оказывают соление, высушивание и нагревание продукта в комбинации с образующимися при возгонке древесины и поступающими в дым соединениями – фенолами, формальдегидом, органическими кислотами, фурфуролом и др. Другим видом комбинированного консервирования является пресервирование. Пресервы - это продукты, которые консервируют солением, маринованием, пастеризацией или пищевыми добавками и помещают без стерилизации в герметически укупориваемые банки. Такие консервы имеют ограниченный срок хранения и должны храниться в условиях охлаждения. Вяление является одним из видов естественной сушки, при которой осуществляется высушивание предварительно подсоленного продукта – мяса, рыбы - на открытом воздухе. При всех видах комбинированного консервирования наблюдается преимущественно угнетение жизнедеятельности микроорганизмов и активности ферментов, тогда как споры остаются жизнеспособными.

Эпидемиологическое значение баночных консервов. Баночные консервы могут стать причиной пищевых инфекций и отравлений вследствие обильного инфицирования сырья, недостаточной стерилизации и асептического действия других консервантов, несоблюдения требований при хранении. Так как продукты в баночных консервах укупориваются герметически, создается анаэробная среда, благоприятная для прорастания спор анаэробных микроорганизмов, в частности, таких как, Cl. Botulinum и Cl. Perfringens. Обычно при стерилизации споры погибают, но нарушения режима стерилизации и низкая кислотность среды могут способствовать сохранению жизнеспособности спор и прорастанию их с образованием смертельно опасных токсинов. Больше подвержены такой опасности пресервы, так как они не стерилизуются.

При недостаточной стерилизации и герметизации банки, низкой кислотности содержимого могут остаться жизнеспособными неспорообразующие микроорганизмы – коли-формы, плесени, дрожжи, золотистый стафилококк и др., размножение которых приводит к массивному обсеменению продукта, накоплению в нем микробных токсинов и может стать причиной пищевых отравлений.

Баночные консервы могут обусловить и развитие немикробных пищевых отравлений вследствие возможного загрязнения продукта веществами, поступающими из материала банки.

Наиболее характерными признаками порчи консервов являются вздутие крышек и донышек банок, так называемый бомбаж . Различают истинный (бактериальный, химический) и ложный (физический) виды бомбажа. Бактериальный бомбаж развивается за счет жизнедеятельности анаэробных микроорганизмов вследствие разложения ими белковых соединений с образованием газов - сероводорода, метана, аммиака, углекислого газа и др. Однако, если нарушена герметичность банки, признаки бомбажа могут отсутствовать, так как образующиеся газы удаляются из банки через имеющиеся дефекты.

При нарушении условий хранения, отсутствии защитного покрытия лаком внутренней поверхности банки, коррозийных процессах кислоты, содержащиеся в продукте, или же внесенные как консерванты, вступают в химическое взаимодействие с металлом с образованием свободного водорода. Накопление водорода приводит к развитию химического бомбажа банки, а также переходу в продукт солей олова, свинца и других металлов из материала банки. Консервы с бактериальным и химическим бомбажом не пригодны для употребления в пищу. Они должны быть изъяты из обращения и уничтожены.

Физический бомбаж обычно возникает при нагревании или замораживании вследствие увеличения объема продукта, при переполнении банок перед закаткой или же при сильной деформации корпуса банки. Консервы с физическим бомбажом не опасны для здоровья человека, но использовать их нельзя, так как по внешнему виду невозможно распознать природу бомбажа у отдельно взятых банок.

Для определения качества стерилизации консервов проводят термостатную пробу. Консервы помещают в термостат при tº 37ºС на 5-10 дней. При некачественной стерилизации в банке благодаря благоприятным температурным условиям, создаваемым в термостате, усиленно размножаются микроорганизмы, что приводит к еще большему газообразованию и вспучиванию дна и крышки банки.

К реализации не допускаются банки бомбажные, негерметичные, с наличием ржавчины или потеков, признаками микробной порчи – плесневением, брожением.

Кислые продукты могут вызвать коррозию металла банки, что проявляется наличием темных пятен и ржавчины на внутренней поверхности банки. Олово и железо, взаимодействуя с сернистыми компонентами богатых белками продуктов, вызывают так называемую сульфидную коррозию («мраморность»). «Мраморность» характеризуется появлением черных, коричневых пятен, полос или пленки. Могут потемнеть и сами консервированные продукты, особенно крабы, омары, зеленый горошек и др. Сульфидная пленка не вредна для здоровья, но значительно снижает органолептические показатели продукта.

Для оценки микробиологической безопасности в полных консервах определяют наличие и количество:

· спорообразующих мезофильных аэробных и факультативно-анаэробных микроорганизмов групп B.subtilis, B. cereus, B. polymyxa;

· мезофильных клостридий, в том числе, Cl. perfringens, Cl. Botulinum;

· неспорообразующих микроорганизмов, молочно-кислых, плесневых грибов, дрожжей;

· спорообразующих термофильных анаэробов, аэробных и факультативно-анаэробных микроорганизмов.

В пресервах определяют содержание КМАФАнМ, БГКП, сульфитредуцирующие клостридии, сальмонеллы, B. cereus, S. aureus.

Присутствие Cl. Perfringens и Cl. Botulinum не допускается, а других мезофильных клостридий должно быть не более 1 микробной клетки в 1 г продукта. Присутствие спороносных микроорганизмов группы B.subtilis допускается в количестве не более 10 клеток на 1г продукта. При обнаружении термофильных спорообразующих микроорганизмов консервы оценивают как соответствующие требованиям, но температура хранения таких консервов не должна превышать 20 ºС. В консервах не должны обнаруживаться микроорганизмы, которые способны проявлять свою жизнедеятельность при температуре хранения, установленной для данных консервов.

Если микробиологические показатели не соответствуют требованиям СанПиН, консервы признаются непригодными для употребления в пищу и подлежат утилизации.

Для оценки химической безвредности консервов в них контролируется содержание:

· веществ, которые могут поступить из материала тары или из аппаратуры в процессе производства (медь)

· токсических соединений, которые содержались изначально в самом продукте

· пищевых добавок.

Для упаковки консервов используют жестяные, хромированные, алюминиевые, стеклянные банки, а также тару из полимерных материалов. Жесть покрывается сверху полудой, которая представляет собой тонкий слой олова. Учитывая материал тары, в продуктах определяют содержание олова, хрома, свинца, меди или же продуктов деструкции полимерных материалов. Вместе с тем, наличие свинца, хрома и других соединений в продуктах может быть обусловлено и повышенным содержанием их в сырье. Поэтому в консервах проводят определение таких токсичных элементов, как ышьяк, ртуть, кадмий, свинец, а также пестицидов и радионуклидов. Количество свинца в продуктах в жестяной таре не должно превышать 1 мг/кг (в молочных – 0,3мг/кг), олова – 200 мг/кг, хрома – 0,5 мг/кг, меди – в рыбных консервах с томатным соусом – 8 мг/кг, в овощных консервах, варенье, повидле – 10 мг/кг, в молочных консервах, компотах и пюре – 5 мг/кг, кадмия – 0,1 мг/кг. Олово не должно содержать более 0,14% примесей, из них свинца должно быть не более 0,04%.

Средства консервации принято подразделять на четыре группы: 1) масла и смазки; 2) осушители; 3) инертные атмосферы; 4) ингибиторы коррозии.

Кроме того, необходимо выделить так называемые барьерные материалы, назначение которых - предотвратить либо замедлить доступ к изделию агрессивных жидких и газообразных веществ, или создать вокруг него защитную атмосферу, содержащую, например, пары ингибитора, или способствовать сохранению защитных веществ (масел, смазок) на поверхности изделия.

Масла и смазки применяют для краткосрочного хранения изделий. Для легких условий хранения без барьерной упаковки эти средства консервации могут обеспечить защиту в течение 3-5 лет. Однако в большинстве случаев срок хранения изделий не превышает полуторадвух лет.

Смазки состоят из жидкой основы (дисперсионной среды - нефтяные масла) твердого загустителя (дисперсной фазы - мыла, углеводороды, бентонит, силикагель) и различных добавок (графит, тальк, слюда и т.п.). Для защиты от коррозии металлических изделий, машин и оборудования при их транспортировке и длительном хранении применяют специальные консервационные смазки, которые перед началом эксплуатации необходимо заменять на антифрикционные. Существуют рабоче- консервационные смазки, которые не нуждаются в такой замене. Законсервированные ими изделия могут непосредственно после транспортировки и хранения включаться в эксплуатацию.

Основные объекты применения смазок - открытые и негерметизированные узлы трения; труднодоступные узлы трения; механизмы, расположенные под переменным углом к горизонту; узлы трения, где невозможна частая смена смазочного материала.

Смазки необходимо применять в следующих случаях:

  • ? переменный скоростной режим эксплуатации машин;
  • ? вынужденный контакт узла трения или защищаемой поверхности с водой либо агрессивными средами;
  • ? резко изменяющийся температурный режим;
  • ? герметизация подвижных уплотнений, сальников и резьбовых соединений;
  • ? длительная консервация машин, оборудования, приборов и металлических изделий;
  • ? необходимость упростить конструкцию, уменьшить массу и размер смазываемых устройств.

Только 14% смазок расходуется для консервации и 2% - для герметизации. Остальные смазки используют в качестве антифрикционных смазочных материалов для уменьшения трения и износа трущихся деталей.

По сравнению с маслами смазки имеют следующие преимущества:

П способность удерживаться в негерметизированных узлах трения;

П высокая эффективность в работе при одновременном воздействии повышенных температур, давлений, ударных нагрузок и переменных режимов скоростей;

П более высокие защитные свойства по отношению к коррозии, повышенная водостойкость;

П способность обеспечивать лучшую герметизацию узлов трения и предохранять их от загрязнения;

  • ? значительно меньшая зависимость вязкости от температуры, что позволяет применять их в более широком интервале температур;
  • ? лучшая смазочная способность;
  • ? больший ресурс работоспособности и меньший расход.

К недостаткам смазок следует отнести более низкую охлаждающую способность, большую склонность к окислению и сложность при использовании в централизованных системах.

Консервационные, а позднее консервационно-рабо- чие и рабоче-консервационные масла полностью вытеснили пластичные смазки из сферы внутренней консервации двигателей машин и механизмов. Преимущества применения этих смазочных материалов для внутренней защиты металлических изделий взамен плотных смазок и рабочих масел следующие: снижение коррозионно-механического износа машин и механизмов, продление срока их службы и повышение надежности (безотказности в работе), снижение затрат и относительной стоимости консервации и расконсервации техники (в 3-5 раз по сравнению с рабочими маслами и в 6-10 раз по сравнению с плотными смазками).

Выделяют две основные области их применения:

  • 1) непосредственно на металлообрабатывающих, машиностроительных и других предприятиях для межоперационной защиты деталей и узлов и консервации изделия в сборе на период его транспортировки и хранения;
  • 2) при хранении, периодической и постоянной эксплуатации техники.

Консервационно-рабочие и рабоче-консервационные масла отличаются от консервационных тем, что после завершения периода хранения на них разрешена эксплуатация техники. Эксплуатировать технику, даже кратковременно, на консервационных маслах запрещается.

Общее достоинство масел и смазок - дешевизна. Их наносят на поверхность изделий намазыванием, распылением и погружением. Перед консервацией масла разогревают. Нанесение масел при температуре ниже 15 °С недопустимо. Пластичные смазки предварительно расплавляют при температуре 80... 100 °С.

Наиболее широко применяют масла и смазки НГ- 203(А и Б), ПВК, К-17, ВО, РЖ, КРМ. Для консервации используют иногда обычные рабочие масла с добавкой присадок-ингибиторов (например, АКОР-1 или КП) в количествах 5... 15% от массы консервационной смеси.

Осушители применяют для снижения влажности воздуха внутри барьерной упаковки. При длительном хранении влажность воздуха желательно понизить до

20...30%. Обычно в качестве осушителя используют силикагель, иногда другие осушители, например цеолиты. Чтобы обеспечить консервацию изделий на срок 2-3 года, количество силикагеля принимают из расчета 0,1... 1 кг на 1 м 2 упаковочной барьерной пленки. Используемый силикагель должен содержать не более 2% влаги; в противном случае его необходимо предварительно осушить. Контролировать влажность внутри упаковки можно с помощью силикагеля-индикатора, пропитанного хлористым кобальтом. В сухом виде он синий или сине-фиолетовый, при увлажнении становится розовым или фиолетово-розовым.

Недостаток метода осушения - ускоренное старение неметаллических материалов в сухой атмосфере.

Инертные атмосферы применяют в исключительных случаях для консервации особо ответственных изделий, поскольку средство это достаточно дорогое. Но данный метод консервации весьма эффективен. Для создания инертной атмосферы используют азот или гелий, подвергнутый глубокой осушке. Во избежание проникновения влаги внутрь упаковки инертный газ внутри нее должен находиться под избыточным давлением. Это обусловливает использование в качестве упаковки герметичных металлических контейнеров.

Ингибиторы коррозии - универсальные, дешевые и наиболее широко применяемые средства консервации и защиты от коррозии металлических изделий.

Для консервации чаще всего используют один из нижеследующих способов применения ингибиторов.

  • 1. Нанесение ингибиторов на поверхность изделия из растворов. Таким образом наносят, например, ингибиторы NaN0 2 , Г-2, НДА, ИФХАН-1 и др.
  • 2. Конденсация ингибиторов на поверхности изделий из воздуха, насыщенного их парами. Воздух при высокой температуре насыщают парами ингибитора (НДА, КЦА, ИФХАН-1 и т.д.). Горячий воздух направляется в консервируемое изделие, и ингибитор осаждается тонкой пленкой на его холодных стенках.
  • 3. Нанесение на поверхность металла полимерной пленки, содержащей ингибиторы коррозии.

Ингибированные полимерные покрытия подразделяют на неснимаемые и снимаемые. Неснимаемые покрытия предназначены для защиты металлов и металлических изделий на период монтажа, транспортировки и хранения. При необходимости в дальнейшем окрашивать изделия такие ингибированные покрытия можно не удалять. К неснимаемым относят покрытия на основе красок ГФ-570, ГФ-570 РК, эмали МС-1181. Снимаемые покрытия предназначены для защиты металлов и металлических изделий, не подлежащих окраске, на период монтажа, транспортировки и хранения. После выполнения защитных функций такое покрытие удаляется. В этом случае применяют легкоснимаемые (ЛСП) и смываемые покрытия. Смываемые покрытия после выполнения защитных функций удаляются растворителями (ИС-1, ИСМ-3, НГ-216). ЛСП делят на три группы: 1) покрытия на основе пленкообразующих веществ, растворимых в органических растворителях; 2) покрытия на основе водных латексов; 3) покрытия на основе плавких пленкообразующих материалов, наносимых из расплавов.

К первой группе покрытий (полимеры винилхлорида, хлор- и фторпроизводные полиэтилена) относят составы ХВ-036, ХП-1, ФП-5, ФП-6, лаки ХС-5676, ХС-596, покрытие ЛСП, ко второй - защитные покрытия, получаемые из водных дисперсий или эмульсий полимеров: составы АК-535, АК-535П, ИС-К4-51, к третьей - съемное ингибированное покрытие ЗИП на основе этил целлюлозы.

  • 4. Упаковка изделий в ингибированную бумагу. Очень распространенный и эффективный способ, применяемый для защиты многих типов изделий. Используют следующие типы таких бумаг: МБГИ (с метанитробензоатом гексаметиленимина - Г-2), НДА (с нитритом ди- циклогексиламина), УНИ (с нитритуротропиновой смесью), БН (с бензоатом натрия) и др.
  • 5. Внесение в замкнутое пространство пористого носителя с ингибитором. Метод основан на использовании пористого адсорбента типа «Линосиль» или «Линопон», пропитанного соответствующим ингибитором.

Барьерные материалы также играют важную роль при консервации изделий. К ним относятся парафинированная бумага, бумага с нанесенной на нее пластмассовой пленкой или металлической фольгой, а также поливинилхлоридная и полиэтиленовая пленка. Наиболее распространенный и эффективный материал такого типа - полиэтиленовая пленка. Для очень жестких условий она должна иметь толщину не менее 150 мкм, в остальных случаях - не менее 100 мкм. Паропроницаемость такой пленки составляет 5...8 г/(м 2 -сут) при температуре 40 °С.