Полезные продукты для сосудов. Строение кровеносных сосудов

Образцы для испытаний на ударную вязкость, как правило, вырезают на металлорежущих станках (фрезерные, расточные) с предохранением их от нагрева и наклёпа. Для первичной вырезки темплета из массива слитка, листа проката, стенки резервуара или трубы большого диаметра допускается применение газовой резки или вулканитового круга. В этом случае необходимо обеспечить условия, чтобы выделяющееся при резке металла тепло не оказывало воздействия на свойства металла, предназначенного для испытаний. Обычно это обеспечивается удалением зоны реза от расположения образцов не менее 50 мм в каждую сторону.

При вырезке заготовок из листового металла с помощью механических

ножниц также следует предусматривать соответствующие припуски на наклёп и удалять образцы от зоны реза.

Образец должен быть обработан со всех сторон в точном соответствии с требованиями стандарта по точности и чистоте поверхностей. Углы пересечения всех граней должны составлять 90±0,5 о .

Заключительную обработку боковых поверхностей образцов следует проводить на плоскошлифовальных станках с обильным охлаждением для предотвращения образования шлифовочных ожогов. Изготовленные образцы рекомендуется подвергнуть размагничиванию для снятия остаточного магнетизма (после закреплении образцов на магнитном столе плоскошлифовального станка).

Надрез можно изготавливать сверлением, фрезерованием или при помощи абразивного камня. В последнем случае на поверхности камня не должно быть рисок, видимых без применения оптических приборов. Допускается доводка и шлифовка дна надреза наждачной бумагой с мелким зерном абразива. Необходимо помнить, что даже ничтожные дефекты на поверхности надреза или незначительные отклонения от указанных в стандарте размеров могут оказать существенное влияние на результаты испытаний! При небрежном изготовлении образцов и надрезов разброс результатов может составлять от нескольких процентов до нескольких раз.

Направление рисок от механической обработки на поверхности надреза оказывает заметное влияние на величину ударной вязкости . Если надрез выполнен фрезерованием, риски располагаются перпендикулярно к направлению растягивающих усилий при приложении ударной нагрузки, и величина ударной вязкости оказывается заниженной . При изготовлении надреза сверлением риски будут параллельны оси надреза, поэтому значения ударной вязкости при испытаниях таких образцов оказываются завышенными . При изготовлении надрезов абразивным камнем (или вулканитовым кругом) значения ударной вязкости будут находиться между двумя указанными выше величинами.

Ось надреза должна быть перпендикулярна продольной оси образца, образуемый при этом угол должен быть в пределах 90±2 о.

Если испытаниям подвергаются образцы, подвергнутые термической обработке, то она должна быть завершена до изготовления надреза.

Все размеры образцов и надрезов контролируются штангенциркулями по ГОСТ 166-89 с ценой деления 0,05 мм. Допускается применять и другие измерительные приборы, обеспечивающие измерение с точностью, указанной в табл. 7.2

Основными при проведении испытаний считаются образцы типа 1 (см. табл. 7.2) размером 10х10х55 мм. В случае, когда толщина материала заготовки (стенка резервуара, труба трубопровода) не позволяет вырезать полноразмерные образцы, допускается проводить испытания на образцах типа 3, имеющих половинное значение размера B: 10х5х55 мм. Однако результаты испытаний образцов уменьшенного размера могут сравниваться только с результатами испытаний таких же образцов .

Самые страшные болезни-инсульт и инфаркт-связаны с нарушением работы сосудов. И сохранять их в хорошем состоянии помогает правильная диета.

Понятно,что алкоголь,фастфуд,пересоленная пища вредны для сосудов. Но существуют и полезные продукты,которые восстанавливают эластичность сосудов и препятствуют отложению в них атеросклеротических бляшек,нормализуют давление,а также содержат вещества,необходимые для оптимального состава крови.


Продукты содержащие клетчатку очищают сосуды

От неправильного питания на стенках сосудов образуются бляшки. Их скопление уменьшает сечение сосудов и их эластичность.Необходимо постоянно следить за тем,что вы едите.Употреблять в пищу продукты очищающие сосуды.

В основном-это продукты,содержащие клетчатку.Она выводит вредные вещества,очищает и снижает уровень холестерина.

Цельное зерно

Цельное зерно-неочищенный рис,овсяная и гречневые крупы,цельнозерновой хлеб из муки грубого помола-богаты пищевыми волокнами,которые связывают лишний и выводят его из организма.

Фасоль,бобы

Фасоль и бобы содержат большое количество белка, клетчатки, железа и фолиевой кислоты.При том,в них отсутствуют жирные кислоты.Это незаменимые продукты для профилактики и лечения атеросклероза, инсульта.

Спаржа

Спаржа является одним из лучших естественных очистителей артерий.Она лечит даже многолетнее воспаление сосудов и снижает артериальное давление,предотвращает образование тромбов.

Способ приготовления: варить спаржу нужно только пару минут в подсоленной слегка воде,затем сбрызнуть оливковым или подсолнечным маслом.Подавать на стол как гарнир.

Брокколи

Брокколи и другие виды капусты богаты витаминами С и К,которые предотвращают отложение солей в холестериновых бляшках и повреждение артерий.

В брокколи много клетчатки,которая нормализует уровень холестерина.

Ее можно употреблять в супах и готовить из нее гарнир.Готовить нужно не слишком долго.Правильно приготовленная капуста должна слегка хрустеть.

Куркума

Куркума имеет очень сильное противовоспалительное действие,предупреждает затвердевание артерий,уменьшает жировые отложения в них на целых 26%. Добавляйте куркуму в первые и вторые блюда.Можно специально добавлять ее в теплое молоко.

Хурма

Хурма содержит в 2 раза больше клетчатки и антиоксидантов,чем яблоко. А эти вещества просто необходимы для хорошей работоспособности кровеносной системы.

Также в ней есть полифенолы,уменьшающие налипание холестерина на внутренние стенки сосудов.

Шпинат

Шпинат содержит фолиевую кислоту и другие незаменимые вещества.Он помогает нормализовать кровяное давление. Одна порция шпината в день снижает риск сосудистых заболеваний на 11%. Зимой свежий шпинат можно заменять замороженными листьями и добавлять их в пищу: салаты,супы,омлеты.


Продукты,богатые витаминами и минеральными веществами укрепляют сосуды

Необходимо постоянно доставлять в организм строительный материал,от которого зависит здоровье сосудов. Продукты укрепляющие сосуды должны содержать витамины и минеральные вещества.Конечно, в основном,-это фрукты и ягоды: гранат,апельсины(цитрусовые),киви,хурма,клюква,черная рябина, смородина.Почти все ягоды содержат витамин С,который укрепляет и защищает стенки сосудов от повреждений и воспалений. .

Авокадо

Авокадо содержит цинк и другие минералы,необходимые для восстановления тканей,в том числе сосудистых стенок. Если ежедневно в течение недели есть авокадо,то можно снижается уровень «плохого» холестерина на 17% и при этом возрастает уровень «хорошего».

Попробуйте класть на зерновой хлеб тонкие ломтики авокадо вместо сливочного масла. Если вкус такого бутерброда вам не понравится,попробуйте добавлять этот экзотический плод в салаты.

Грейпфрукт

Грейпфрукт уникален по своим лечебным свойствам.Он великолепный помощник почти для всех процессов в организме.

Он чистит сосуды. Пектины грейпфрукта укрепляют кровеносные сосуды.А содержащиеся в нем минеральные вещества(кальций, магний, натрий, калий, фосфор, железо, йод, кобальт, цинк, фтор, медь, марганец) и витамины(бета-каротин, витамины А, С, Е, РР, группы В) восстанавливают эластичность стенок сосудов.

Желательно 2-3 раза в неделю съедать в один из приемов пищи целый грейпфрукт сразу. Только нужно это делать в промежуток времени между приемами лекарств.

Клюква

Клюква богата калием и аскорбиновой кислотой.Регулярное их употребление поможет снизить на 40% риск сердечно-сосудистых заболеваний.

Творог

Творог содержит легкоусвояемые аминокислоты-строительный материал,необходимый для сохранности стенок сосудов.

Также в его состав входит целый ряд минеральных веществ,без которых невозможен нормальный кровоток.

Люди,которые ежедневно употребляют обезжиренные молочные продукты,реже страдают болезнями кровеносной системы по сравнению с теми.кто не ест творог и сыр, и не пьет кефир.

Старайтесь покупать молочные продукты с низким процентом жирности и без добавления консервантов.

Лосось

Лосось или другая жирная рыба-Тунец,скумбрия,сельдь-содержат омега-3 жирные кислоты. Если включить в меню вашего питания жирную рыбу два раза в неделю,то можно снизить риск развития сердечно-сосудистых заболеваний,уменьшить воспаление и улучшить холестериновый обмен.

Полезные жирные кислоты также содержаться в миндале и грецких орехах,тыквенных и кунжутных семечках,оливковом и льняном масле.

При атеросклерозе сосуды все время находятся под давлением кровотока,течению которого не хватает свободного просвета. Поэтому вас и мучают частые головные боли.

Уменьшить давление помогут продукты расширяющие сосуды.

Гранат

Гранат содержит много фито-веществ,защищающие слизистые поверхности артерий от повреждений и воспалений.

Сок граната стимулирует образование в организме окиси азота, которая способствует расширению сосудов и улучшает движение в них крови.

Водоросли

Водоросли не часто используются в кулинарии нашей страны. А ведь,ежедневное употребление водорослей снимает хронический спазм стенок артерий,нормализует артериальное давление и помогает печени вырабатывать «хороший» холестерин,замедляющий развитие атеросклероза.

Зеленый чай

Зеленый чай помогает снизить артериальное давления за счет расширения сосудов и снижения холестерина.

Пример дневного рациона питания

Завтрак:

Каша(с корицей,изюмом,медом,свеклой) или фрукты или салат или творог (с медом)

Свежевыжатый сок из цитрусовых или напиток из шиповника
Обед:
Салат
или куринная грудка с гарниром из овощей

Или овощи с рисом или гречей с грибами
Или суп.
Зеленый чай
Полдник:

Салат или фрукты

Ужин за 2 часа до сна:

Творог или кефир

Контроль над питанием,использование в пищу полезных продуктов для сосудов необходим не только тогда,когда у вас поставлен диагноз: атеросклероз или не дай боже случился . При таких заболеваниях ОБЯЗАТЕЛЬНА строгая правильная диета. Но и про профилактику сосудистых заболеваний не следует забывать с молоду.


Tagged

Строение кровеносных сосудов

Кровеносные сосуды получают свое название в зависимости от органа, который они кровоснабжают (почечная артерия, селезеночная вена), места их отхождения от более крупного сосуда (верхняя брыжеечная артерия, нижняя брыжеечная артерия), кости, к которой они прилежат (локтевая артерия), направления (медиальная артерия, окружающая бедро), глубины залегания (поверхностная или глубокая артерия), Многие мелкие артерии называются ветвями, а вены - притоками.

Артерии . В зависимости от области ветвления артерии делятся на париетальные (пристеночные), кровоснабжающие стенки тела, и висцеральные (внутренностные), кровоснабжающие внутренние органы. До вступления артерии в орган она называется органной, войдя в орган - внутриорганной. Последняя разветвляется в пределах органа и снабжает его отдельные структурные элементы.

Каждая артерия распадается на более мелкие сосуды. При магистральном типе ветвления от основного ствола - магистральной артерии, диаметр которой постепенно уменьшается, отходят боковые ветви. При древовидном типе ветвления артерия сразу же после своего отхождения разделяется на две или несколько конечных ветвей, напоминая при этом крону дерева.

Стенка артерии состоит из трех оболочек: внутренней, средней и наружной. Внутренняя оболочка образована эндотелием, подэндотелиальным слоем и внутренней эластической мембраной. Эндотелиоциты выстилают просвет сосуда. Они вытянуты вдоль его продольной оси и имеют малоизвитые границы, Подэндотелиальный слой состоит из тонких эластических и коллагеновых волокон и малодифференцированных соединительнотканных клеток. Кнаружи расположена внутренняя эластическая мембрана. Средняя оболочка артерии состоит из расположенных спирально миоцитов, между которыми находится небольшое количество коллагеновых и эластических волокон, и наружной эластической мембраны, образованной переплетающимися эластическими волокнами. Наружная оболочка состоит из рыхлой волокнистой неоформленной соединительной ткани, содержащей эластические и коллагеновые волокна.

В зависимости от развития различных слоев стенки артерии подразделяются на сосуды мышечного, смешанного (мышечноэластнческого) и эластического типов. В стенках артерий мышечного типа, имеющих небольшой диаметр, хорошо развита средняя оболочка. Миоциты средней оболочки стенок артерий мышечного типа своими сокращениями регулируют приток крови к органам и тканям. По мере уменьшения диаметра артерий все оболочки стенок истончаются, уменьшается толщина подэндотелиального слоя и внутренней эластической мембраны.

Рис, 102. Схема строения стенки артерии (А) и вены (Б) мышечного типа среднего калибра /-внутренняя оболочка: 1-эндотелий. 2- базальная мембрана, 3-подэндотелиальный слой, 4- внутренняя эластическая мембрана; // - средняя оболочка и в ней: 5- миоциты, б-эластические волокна, 7-коллагеновые волокна; /// - наружная оболочка и в ней: 8- наружная эластическая мембрана, 9-волокнистая (рыхлая) соединительная ткань, 10- кровеносные сосуды

Постепенно убывает количество миоцитов и эластических волокон в средней оболочке. В наружной оболочке уменьшается количество эластических волокон, исчезает наружная эластическая мембрана.

Наиболее тонкие артерии мышечного типа - артериолы имеют диаметр менее 10 мкм и переходят в капилляры. В стенках артериол отсутствует внутренняя эластическая мембрана. Средняя оболочка образована отдельными миоцитами, имеющими спиральное направление, между которыми находится небольшое количество эластических волокон. Наружная эластическая мембрана выражена лишь в стенках наиболее крупных артериол и отсутствует у мелких. Наружная оболочка содержит эластические и коллагеновые волокна. Артериолы регулируют приток крови в систему капилляров. К артериям смешанного типа относятся такие артерии крупного калибра, как сонная и подключичная. В средней оболочке их стенки примерно равное количество эластических волокон и миоцитов. Внутренняя эластическая мембрана толстая, прочная. В наружной оболочке стенок артерий смешанного типа можно выделить два слоя: внутренний, содержащий отдельные пучки миоцитов, и наружный, состоящий преимущественно из продольно и косо расположенных пучков коллагеновых и эластических волокон. К артериям эластического типа оголятся аорта и легочный ствол, в которые кровь поступает под большим давлением с большой скоростью из сердца. ; стенках этих сосудов внутренняя оболочка толще, внутренняя эластическая мембрана представлена густым сплетением тонких эластических волокон. Средняя оболочка образована эластическими мембранами, расположенными концентрически, между которыми залегают миоциты. Наружная оболочка тонкая. У детей диаметр артерий относительно больше, чем у взрослых. У новорожденного артерии преимущественно эластического типа, в их стенках много эластической ткани. Артерии мышечного тлил еще не развиты.

Дистальная часть сердечно-сосудистой системы микроциркуляторное русло (рис, 103), обеспечивающее взаимодействие крови и тканей. Микроциркуляторное русло начинается самым мелким артериальным сосудом - артериолой и заканчивается венулой.

Стенка артерии содержит лишь один ряд миоцитов. От артериолы отходят прекапилляры, у начала которых находятся гладкомышечные прекапиллярные сфинктеры, регулирующие кровоток. В стенках прекапилляров в отличие от капилляров поверх эндотелии лежат единичные миоциты. От них начинаются истинные капилляры. Истинные капилляры вливаются в посткапилляры (посткапиллярные венулы). Посткапилляры образуются из слияния двух или нескольких капилляров. Они имеют тонкую адвентициальную оболочку, стенки их растяжимы и обладают высокой проницаемостью. По мере слияния посткапилляров образуются венулы. Их калибр широко варьирует и в обычных условиях равен 25-50 мкм. Венулы вливаются в вены. В пределах микроциркуляторного русла встречаются сосуды прямого перехода крови из артериолы в венулу-артериоло-венулярные анастомозы, в стенках которых имеются миоциты, регулирующие сброс крови. К микроциркуляторному руслу относятся также и лимфатические капилляры.

Обычно к капиллярной сети подходит сосуд артериального типа (артериола), а выходит из нее венула. В некоторых органах (почка, печень) имеется отступление от этого правила. Так, к клубочку почечного тельца подходит артериола (приносящий сосуд). Выходит из клубочка также артериола (выносящий сосуд). 8 печени капиллярная сеть располагается между приносящей (междольковой) и выносящей (центральной) венами. Капиллярную сеть, вставленную между двумя однотипными сосудами (артериями, венами), называют чудесной сетью.

Капилляры . Кровеносные капилляры (гемокапилляры) имеют стенки, образованные одним слоем уплощенных эндотелиальных клеток - эндотелиоцитов, сплошной или прерывистой базальной мембраной и редкими перикапиллярными клетками - перицитами, или клетками Руже.

Эндотелиоциты лежат на базальной мембране (базальном слое), которая со всех сторон окружает кровеносный капилляр. Базальный слой состоит из фибрилл, сплетенных между собой, и аморфного вещества. Кнаружи от базального слоя лежат клетки Руже, представляющие собой удлиненные многоотростчатые клетки, расположенные вдоль длинной оси капилляров. Следует подчеркнуть, что каждый эндотелиоцит контактирует с отростками перицитов. В свою очередь, к каждому перициту подходит окончание аксона симпатического нейрона, которое как бы ннвагннируется в его плазмалемму. Перицит передает эндотелиоциту импульс, в результате чего эндотелиальная клетка набухает или теряет жидкость. Это и приводит к периодическим изменениям просвета капилляра.

Цитоплазма эндотелиоцитов может иметь поры, или фенестры (пористый эндотелиоцит). Неклеточный компонент - базальный слой может быть сплошным, отсутствовать или быть пористым. В зависимости от этого различают три типа капилляров:

1. Капилляры с непрерывным эндотелием и базальным слоем. Такие капилляры располагаются в коже; мышцах исчерченных (поперечнополосатых), включая миокард, и неисчерченных (гладких); коре большого мозга.

2. Фенестрированные капилляры, у которых некоторые участки эндотелиоцитов истончены.

3. Синусоидные капилляры имеют большой просвет, до 10 мкм. В их эндотелиоцитах находятся моры, а базальная мембрана частично отсутствует (прерывистая). Такие капилляры расположены в печени, селезенке, костном мозге.

Посткапиллярные венулы диаметром 100-300 мкм, являющиеся конечным звеном микроциркуляторного русла, впадают в собирательные венулы (диаметром 100- 300 мкм). которые, сливаясь между собой, укрупняются, Строение посткапиллярных венул на значительном протяжении сходно со строением стенок капилляров, у них лишь шире просвет и большее количество перицитов. У собирательных венул появляется наружная оболочка, образованная коллагеновыми волокнами и фибробластами. В средней оболочке стенки более крупных венул расположено I -2 слоя гладких мышечных клеток, количество их слоев увеличивается в собирательных пенах,

Вены . Стенка вены также состоит из трех оболочек. Различают два тина вен: безмышечного и мышечного типов, У безмышечных вен снаружи к эндотелию прилежит базальная мембрана, за которой располагается тонкий слон рыхлой волокнистой соединительной ткани. К венам безмышечного типа относятся вены твердой и мягкой мозговых оболочек, сетчатки глаза, костей, селезенки и плаценты. Они плотно сращены со стенками органов и поэтому не спадаются.

Вены мышечного типа имеют хорошо выраженную мышечную оболочку, образованную циркулярно расположенными пучками миоцитов, разделенных прослойками волокнистой соединительной ткани. Наружная эластическая мембрана отсутствует. Наружная соединительнотканная оболочка развита хорошо. На внутренней оболочке большинства средних и некоторых крупных вен имеются клапаны (рис. 104). Верхняя полая вена, плечеголовные, общие я внугрение подвздошные, вены сердца, легких. надпочечников, головного мозга и их оболочек, паренхиматозных органов клапанов не имеют. Клапаны представляют собой тонкие складки внутренней оболочки, состоящие из волокнистой соединительной ткани, покрытые с обеих сторон эндотелиоцитами. Они пропускают кровь лишь по направлению к сердцу, препятствуют обратному току кропи в венах и предохраняют сердце от излишней затраты энергии на преодоление колебательных движений крови, постоянно возникающих в венах. Венозные синусы твердой мозговой оболочки, и которые оттекает кровь от головного мозга, имеют не спадающиеся стенки, обеспечивающие беспрепятственный ток крови из полости черепа во внечерепные вены (внутренние яремные).

Общее количество вен больше, чем артерий, а общая величина венозного русла превосходит артериальное. Скорость кровотока в венах меньше, чем в артериях, в венах туловища и нижних конечностей кровь течет против силы тяжести. Названия многих глубоких вен конечностей аналогичны названиям артерий, которые они попарно сопровождают,- вены-спутницы (локтевая артерия - локтевые вены, лучевая артерия - лучевые вены).

Большинство вен, расположенных в полостях тела, одиночные. Непарными глубокими венами являются внутренняя яремная, подключичная, подмышечная, подвздошные (общая, наружная и внутренняя), бедренная и некоторые другие. Поверхностные вены соединяются с глубокими с помощью прободающих вен, которые выполняют роль анастомозов Соседние вены также связаны между собой многочисленными анастомозами, образующими в совокупности венозные сплетения, которые хорошо выражены на поверхности или в стенках некоторых внутренних органов (мочевого пузыря, прямой кишки).

Верхняя и нижняя полые вены большого круча кровообращения впадают и сердце. В систему нижней полой пены входит воротная вена с ее притоками. Окольный ток крови осуществляется также но коллатеральным венам, но которым показная кровь оттекает и обход основного пути. Притоки одной крупной (магистральной) вены соединяются между собой внутрисистемными венозными анастомозами. Венозные анастомозы встречаются чаще и развиты лучше, чем артериальные.

Малый, или легочный, круг кровообращения начинается в правом желудочке сердца, откуда выходит легочный ствол, который делится на правую и левую легочные артерии, а последние разветвляются в легких на артерии, переходящие в капилляры- В капиллярных сетях, оплетающих альвеолы, кровь отдает углекислоту и обогащается кислородом. Обогащенная кислородом артериальная кровь поступает из капилляров в вены, которые, слившись в четыре легочные вены {по две с каждой стороны), впадают в левое предсердие, где и заканчивается малый (легочный) круг кровообращения.

Большой, или телесный, круг кровообращения служит дли доставки всем органам и тканям тела питательных веществ и кислорода, Он начинается в левом, желудочке сердца, куда от левого предсердия поступает артериальная кровь. Из левого желудочка выходит аорта, от которой отходят артерии, идущие ко всем органам и тканям тела и разветвляющиеся в их толще вплоть до артериол и капилляров. Последние переходят а венулы и далее в вены. Через стенки капилляров осуществляется обмен веществ и газообмен между кровью и тканями тела. Протекающая в капиллярах артериальная кроль отлает питательные вещества и кислород и получает продукты обмена и углекислоту. Бены слипаются в два крупных ствола - верхнюю и нижнюю полые вены, которые впадают в правое предсердие сердца, где и заканчивается большой круг кровообращения. Дополнением к большому кругу является третий (сердечный) круг кровообращения, обслуживающий само сердце- Он начинается выходящими из аорты венечными артериями сердил и заканчивается венам» сердца. Последние слипаются в венечный синус, впадающий в правое предсердие, а остальные наиболее мелкие вены открываются непосредственно в полость правого предсердия и желудочка.

Ход артерий и кровоснабжение различных органов зависят от их строения, функции и развития и подчиняются ряду закономерностей. Крупные артерии располагаются соответственно скелету и нервной системе. Так, вдоль позвоночного столба лежит аорта. На конечностях кости соответствует одна магистральная артерия.

Артерии идут к соответствующим органам по наиболее короткому пути, т. е. приблизительно по прямой линии, соединяющей основной ствол с органом. Поэтому каждая артерия кровоснабжает близлежащие органы. Если во внутриутробном периоде орган перемещается, то артерия, удлиняясь, следует за ним к месту его окончательного расположения (например, диафрагма, яичко). Артерии располагаются на более коротких сгибательных поверхностях тела. Вокруг суставов образуются суставные артериальные сети. Защиту от повреждений, сдавлений выполняют кости скелета, различные борозды и каналы, образованные костями, мышами, фасциями.

Артерии входят в органы через ворота, расположенные на их согнутой медиальной или внутренней поверхности, обращенной к источнику кровоснабжения. При этом диаметр артерий и характер их ветвления зависят от размеров и функций органа.

Лабораторная работа № 1

Исследование изменения со временем температуры остывающей воды

Цель работы : исследовать изменение со временем температуры остывающей воды, построить график изменения температуры с течением времени, сравнить количества теплоты отданное остывающей водой за одну из первых и одну из последних минут процесса остывания.

Приборы и материалы : сосуд с горячей водой (70 о С – 80 о С), секундомер, термометр.

1.Какое движение называют тепловыми?

2.Какое состояние называют тепловым равновесием?

3.Какое свойство тел положено в основу измерения температуры?

4.Какую энергию называют внутренней?

5.От чего зависит и от чего не зависит внутренняя энергия?

6. Изменилась ли внутренняя энергия

камня при перемеще нии его из положения 1

в поло жение 3? Почему?

7. У первого сосуда стенки сплошные,

а второй сосуд имеет двой ные стенки,

между которыми находится воздух.

В каком из сосу дов вода остынет быстрее?

Поче му?


Порядок выполнения работы

1. Определите цену деления и абсолютную погрешность термометра.

2. Поместите термометр в воду и каждую минуту снимайте его показания. Результаты измерений занесите в таблицу

Время, t, мин.

0

1

2

3

4

5

6

7

8

Температура, t, °С

3. По полученным данным постройте график изменения температуры с течением времени.

t, °С

0 t, мин

4. Сравните изменения температуры воды, произошедшие за одну из первых и одну из последних минут процесса остывания.

5. Сделайте вывод о том, равномерно ли остывает вода в области более высоких и более низких температур. В области каких температур вода остывает быстрее?


Лабораторная работа № 2

Сравнение количеств теплоты при смешивании воды разной температуры

Цель работы : определить количество теплоты, отданное горячей водой и полученное холодной при теплообмене, и объяснить полученный результат.

Приборы и материалы : калориметр, измерительный цилиндр (мензурка), термометр, стакан, холодная и горячая вода.

Примечание : Калориметр – прибор, позволяющий измерять количество теплоты, выделяющейся и поглощающейся в процессе теплопередачи. Он устроен таким образом, чтобы максимально уменьшить теплообмен с внешними телами, не находящимся в калориметре. Простейший калориметр состоит из двух сосудов, один из которых – алюминиевый – вставлен в другой. Между сосудами образуется воздушный промежуток. Алюминиевый сосуд имеет блестящую поверхность, что уменьшает излучение энергии. Так же сокращает потери энергии слой воздуха, обладающего плохой теплопроводностью, между сосудами.

Правила техники безопасности.

Осторожно! Горячая вода! Будьте осторожны при работе с горячей водой. Не разливайте воду – возможны ожоги. Стекло! Будьте осторожны при работе со стеклянной посудой. Помните, стекло – хрупкий материал, легко трескается при ударах и резкой перемене температуры. Не пейте воду из стакана! Снимайте данные, не вынимая термометр из жидкости!

Тренировочные задания и вопросы

1.Какую физическую величину называют количеством теплоты?

2.От каких величин зависит количество теплоты, переданное телу при нагревании?

3. Если мензурки 1 и 2 получат одинаковое

количество тепло ты, то в какой из них

темпера тура воды станет выше? Поче му?

4.Опишите процесс теплообмена,

происходящий при погружении в калориметр

с горячей водой тела, имеющего комнатную

Температуру.

5.На рисунке приведены графики зависимости

температуры от времени при нагревании двух

жидкостей одинаковой массы на одинаковых нагревательных приборах. Чем различаются процессы нагревания этих жидкостей и почему?

t, °С

0 t, мин

Порядок выполнения работы

1.Отмерьте мензуркой 100 мл холодной воды.

2.Измерьте термометром температуру холодной воды t 1 .

3.Отмерьте мензуркой 100 мл горячей воды. Перелейте во внутренний стакан калориметра горячую воду.

4.Измерьте термометром температуру горячей воды t 2

5.Перелейте в калориметр с горячей водой холодную воду. Осторожно помешивая воду, измерьте температуру полученной смеси t.

6.Рассчитайте количество теплоты Q 2 , отданное горячей водой по формуле: Q 2 = с m 2 (t 2 - t )

Q 1 , полученное холодной водой по формуле: Q 1 = с m 1 (t - t 1 )

8.Результаты измерений и вычислений занесите в таблицу.

Масса холодной

воды,

m 1 , кг

Начальная температура холодной воды,

t 1 , ºС

Температура полученной смеси,

t , ºС

Количество теплоты, полученное холодной водой,

Q 1 , Дж

Масса горячей

воды,

m 2 , кг

Начальная температура горячей

воды,

t 2 , ºС

Количество теплоты, отданное горячей водой

Q 2 , Дж

9.Постройте график зависимости количества теплоты от температуры холодной и горячей воды (на одном графике).

10. Сравните количества теплоты Q 1 и Q 2 и сделайте соответствующие выводы.

Лабораторная работа № 3

Измерение удельной теплоёмкости твердого тела

Цель работы : научиться измерять и сравнивать с табличными данными удельную теплоемкость металлического цилиндра.

Приборы и материалы : тело на нити, калориметр, стакан с холодной водой, термометр, весы, разновес, измерительный цилиндр(мензурка), сосуд с горячей водой.

Правила техники безопасности.

Осторожно! Горячая вода! Будьте осторожны при работе с горячей водой. Не разливайте воду – возможны ожоги. Стекло! Будьте осторожны при работе со стеклянной посудой. Помните, стекло – хрупкий материал, легко трескается при ударах и резкой перемене температуры. Не пейте воду из стакана! Снимайте данные, не вынимая термометр из жидкости!

Тренировочные задания и вопросы

1.Какую физическую величину называют удельной теплоемкостью вещества?

2.Кубики из алюминия нагрели на 1 °С. Какое количество теплоты нужно для этого?


3. В чугунном котелке нагревали воду. Какой

график зависи мости количества теплоты от

времени построен для воды, а какой для

котелка?

4.В двух непрозрачных сосудах вода

находилась при той же температуре.

Затем сосудам сообщили равные

количества теплоты, и температура в

них повысилась. В каком из сосудов

воды больше? Почему?


Порядок выполнения работы

1.Налейте во внутренний стакан калориметра 100 мл воды комнатной температуры.

2.Измерьте температуру воды в калориметре t 1 .

3.Нагрейте цилиндр в сосуде с горячей водой. Измерьте её температуру (эта температура и будет начальной температурой цилиндра t 2 ).

4.Измерьте температуру воды t в калориметре после опускания цилиндра.

5.С помощью весов определите массу m 2 металлического цилиндра, предварительно осушив его салфеткой.

6.Результаты измерений занесите в таблицу.

Масса воды в калориметре,

m 1 , кг

Начальная температура воды,

t 1 , º C

Масса

цилиндра,

m 2 , кг

Начальная температура цилиндра

t 2 , º C

Общая температура воды и цилиндра

t , º C

7.Рассчитайте количество теплоты Q 1 , которое получила вода при нагревании: Q 1 = с 1 m 1 (t - t 1 )

8. Количество теплоты Q 2 , отданное металлическим цилиндром при

охлаждении: Q 2 = с 2 m 2 (t 2 - t )

9. Так как Q 1 = Q 2 , то с 1 m 1 (t - t 1 )= с 2 m 2 (t 2 - t ) => c 2 =

10.Сравните полученное значение удельной теплоемкости цилиндра с таблицей и определите, из какого материала сделан цилиндр.

11.Найдите абсолютную и относительную ошибку измерений.

Отсюда абсолютная погрешность измерения удельной теплоемкости равна:

12.Окончательный результат запишется следующим образом: с=с 2 ±Δс 2 .

13.Сделайте соответствующие выводы.

Лабораторная работа № 4

Измерение относительной влажности воздуха с помощью термометра

Цель работы : определить относительную влажность воздуха.

Приборы и материалы : термометр демонстрационный, термометр лабораторный, стакан с водой комнатной температуры, кусок марли, психрометрическая таблица.

Правила техники безопасности.

Осторожно! Стекло! Будьте осторожны при работе со стеклянной посудой. Помните, стекло – хрупкий материал, легко трескается при ударах и резкой перемене температуры. Не пейте воду из стакана!

Тренировочные задания и вопросы

1.Какой пар называют насыщенным?

2.Каково важнейшее свойство насыщенных паров?

3.Что показывает относительная влажность воздуха?

4.От чего и как зависит относительная влажность воздуха?

5.Заполните таблицу, используя психрометрическую таблицу.

t сухого

t влажный

Δt

φ

°C

°C

°C

%

Порядок выполнения работы

1.С помощью демонстрационного термометра измерьте температуру воздуха в классе – t сух термометр лабораторный.

2.Оберните резервуар термометра лабораторного марлей так, чтобы кончик ткани свободно свисал вниз, и закрепите его ниткой.

3.Держа термометр за его верхний край, опустите свисающую часть ткани в воду. Вода должна смочить ткань. При этом резервуар термометра должен оставаться выше уровня воды в стакане.

4.Наблюдая за показаниями термометра, запишите самое низкое показание термометра, это значит t влаж .

5. Результаты измерений занесите в таблицу.

Место проведения опыта

Показание сухого термометра

Показание влажного термометра

Разность показаний термометров

Относительная

влажность воздуха

t сух , °С

t вл , °С

Δ t , °C

φ, %

Кабинет

Коридор

Улица

6. С помощью психрометрической таблицы определите относительную влажность воздуха.

7. Соответствует ли полученное значение санитарным нормам?

Лабораторная работа № 5

Сборка электрической цепи и измерение силы тока на различных её участках

Цель работы : научиться собирать простейшую электрическую цепь, пользоваться амперметром, измерять силу тока на различных участках цепи, и убедиться на опыте в том, что сила тока в различных последовательно соединённых участках цепи одинакова на любом участке цепи.

Приборы и материалы : лабораторный источник питания, электрическая лампочка, амперметр, ключ, соединительные провода.

Правила техники безопасности.

Тренировочные задания и вопросы

1.На рисунке изображена электрическая цепь. Из каких элементов состоит эта цепь? Нарисуйте схему электрической цепи.



2.На рисунке изображены шкалы амперметров.

Какова цена деления каждого прибора? Каковы

пределы измерения этих приборов? Каковы

показания приборов?



3.Какова сила тока в лампах?

4.Что означает выражение: «сила тока – физическая величина»?

5.Какое явление используется для установления эталона единицы силы тока?

6.Как включают амперметр в схемах электрических цепей?

Порядок выполнения работы

1. Возьмите амперметр в руки, обратите внимание на знаки «+» и «-», подставленные у зажимов прибора.

Внимание! Нельзя присоединять амперметр к зажимам источника без какого-либо приемника тока, соединенного последовательно с амперметром. Можно испортить амперметр!

Клемму амперметра со знаком + обязательно соединяют с проводником,

который идет от полюса со знаком + источника тока.

2. Рассмотрите шкалу амперметра. Определите:

Цену деления амперметра. Предел измерения амперметра. Погрешность измерения амперметра

3.Соберите электрическую цепь по рисунку 1. Запишите показания амперметра. Нарисуйте схему соединения приборов в цепь


4. Включите амперметр так, как показано на рисунках 2 и 3. Зарисуйте схемы соединения цепи. Снимите показания амперметра в обоих случаях.



5.Запишите показания амперметра в таблицу:

№ опыта

Опыт 1

Опыт 2

Опыт 3

Показания амперметра

I , A

6. Сравните результаты измерений силы тока в трех опытах и сделайте соответствующие выводы

Лабораторная работа № 6

Измерение напряжения на различных участках электрической цепи

Цель работы : научиться включать вольтметр в цепь, измерять напряжение на участке цепи, состоящем из двух последовательно соединенных спиралей, и сравнить его с напряжением на конце каждой спирали.

Приборы и материалы : лабораторный источник питания, два резистора, вольтметр, амперметр, ключ, соединительные провода.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Оберегайте приборы от падения.

Тренировочные задания и вопросы

1.Что характеризует напряжение?

2.Как называется прибор для определения напряжения и как он включается на участке цепи?

3. Определите цену деления шкалы вольтметра,

изображенного на рисунке. Каков предел

измерений этого прибора? Чему равно на пряжение

на электрической лампочке?

4.Перечертите схему электрической цепи и

проставьте на схеме символы соответствующих

приборов.

5. Внимательно рассмотрите схемы на рисунке. Все ли в них пра вильно? Если обнаружите ошибки, укажите их и начертите правиль ные схемы цепей.


Порядок выполнения работы

1.Рассмотрите шкалу вольтметра. Определите основные характеристики прибора: предел измерения вольтметра, цена деления шкалы вольтметра, погрешность измерения вольтметра

Внимание! Клемму вольтметра со знаком + обязательно соединяют с клеммой проводника, которая идет от полюса со знаком + источника тока. Никогда не ставьте вольтметр последовательно с источником тока и другими элементами электрической цепи. Испортите амперметр!

2. Соберите электрическую цепь по рисунку 1. Запишите показания вольтметра.


3.Соберите электрическую цепь по рисунку 2. Запишите показания вольтметра. Нарисуйте схему соединения приборов в цепь.


4. Соберите электрическую цепь по рисунку 2. Запишите показания вольтметра. Нарисуйте схему соединения приборов в цепь.


5.Результаты измерения напряжения запишите в таблицу.

№ опыта

Опыт 1 (U 1 )

Опыт 2 (U 2 )

Опыт 3 (U)

Показания вольтметра,

U, В

6. Вычислите сумму напряжений U 1 + U 2 на обеих спиралях и сравните её с напряжением U . Сделайте вывод.

Лабораторная работа № 7

Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении. Измерение сопротивления проводника

Цель работы : убедиться в том, что сила тока в проводнике прямо пропорциональна приложенному напряжению на его концах. Научиться измерять сопротивление проводника при помощи амперметра и вольтметра

Приборы и материалы : лабораторный источник питания, два резистора, вольтметр, амперметр, ключ, соединительные провода, реостат.

Правила техники безопасности.

Тренировочные задания и вопросы

1.От каких величин зависит сопротивление проводника?

2.Как вы понимаете утверждение о том, что удельное сопротивление меди равно 0,017 ?

3. Пользуясь графиком, определите

сопротивления провод ников 1 и 2.

Сделайте вывод о характере зависимости

между сопротив лением проводника и

углом наклона графика.

4.Как математически выразить закон Ома?

5.Какая зависимость существует между

силой тока и сопротивлением на участке цепи с постоянным напряжением?

6.Вольтметр, присоединенный к горящей электрической лампе накаливания, показывает 120 В, а амперметр – силу тока в лампе 0,08 А. Чему равно сопротивление этой лампы? Начертите схему электрической цепи?

7. При напряжении на концах проводника 12 В сила тока 2 А. Какова сила тока при напряжении 3 В?

Порядок выполнения работы

1.Соберите цепь, последовательно соединив источник питания, амперметр, резистор, реостат, ключ. Начертите схему этой цепи.


2. .При трех положениях реостата произвести измерения силы тока в цепи и напряжения на концах первого резистора.

3.При трех положениях реостатах произвести измерения силы тока и напряжения на концах другого резистора.

4.Результаты измерений занесите в таблицу.

№ опыта

Сила тока I, А

Напряжение U, В

Сопротивление R, Ом

Первый резистор

Второй резистор

5.Используя закон Ома, вычислите сопротивление проводника по данным каждого отдельного измерения. Результаты вычислений занесите в таблицу.

6. По данным измерений постройте график зависимости силы тока в проводнике от напряжения на его концах для двух резисторов.

7. Сделайте вывод о том, как зависит сила тока от приложенного напряжения и зависит ли сопротивление проводника от приложенного напряжения к проводнику и силы тока в нем

Лабораторная работа № 8

Регулирование силы тока реостатом

Цель работы : научиться включать в цепь реостат и регулировать с его помощью силу тока в цепи.

Приборы и материалы : лабораторный источник питания, ползунковый реостат, ключ, соединительные провода, амперметр.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Оберегайте приборы от падения. Реостат нельзя полностью выводить из нагрузки, т.к. сопротивление его при этом становится равным нулю!

Тренировочные задания и вопросы

1.Каково назначение реостата в электрической цепи?

2.Почему в реостатах используют проволоку с большим удельным сопротивлением?

3.Как на схемах электрических цепей принято обозначать реостат?

4. Обмотка реостата, изготовленная из константановой проволоки длиной 16 м, имеет сопротивление 40 Ом. Вычислите сечение этой проволоки.

Порядок выполнения работы

1.Рассмотрите внимательно устройство реостата и установите, при каком положении ползунка сопротивление реостата наибольшее.

2.Составьте цепь, включив неё последовательно амперметр, реостат на полное сопротивление, источник питания и ключ. Начертите схему этой цепи


3.Замкните цепь и отметьте показания амперметра.

4.Уменьшайте сопротивление реостата, плавно и медленно передвигая его ползунок (но не до конца!). Наблюдайте за показаниями амперметра.

5.Результаты наблюдений занесите в таблицу.

Положение ползунка реостата

Полное сопротив- ление реостата

Сопротив- ление реостата уменьша- ется

Среднее положение ползунка реостата

Сопротивление реостат увеличивается

Сила тока

I , A

6. Сделайте вывод.

Лабораторная работа № 9

Измерение работы и мощности тока в электрического тока

Цель работы : научиться измерять работу и мощность электрического тока.

Приборы и материалы : лабораторный источник тока, электрическая лампа, вольтметр, амперметр, ключ, соединительные провода, секундомер.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Оберегайте приборы от падения.

Тренировочные задания и вопросы

1.Как можно выразить работу через такие физические величины?

2.С помощью каких приборов можно измерить работу, совершаемую электрическим током?

3.Расчитайте мощность тока в

электродвигателе, используя

показания приборов, изображенных

на рисунке. Как она изменится при

перемещении ползунка реостата вправо?

4.Запишите формулы для расчета

мощности, в которые входят

а)сила тока и сопротивление;

б)напряжение и сопротивление.

5. В электрические цепи, изображенные на рисунке, включены одинаковые лампы, но в первой цепи - последовательно, а во второй - параллельно. При каком соединении этих ламп мощность тока в них будет больше? Напряжение на источнике тока в обеих цепях одинаково.


Порядок выполнения работы

1. Соберите цепь из источника питания, лампы, амперметра и ключа, соединив всё последовательно. Параллельно лампе подключите вольтметр. Начертите схему электрической цепи.


2.Измерьте силу тока и напряжение на лампочке. Запишите результаты измерений в таблицу с учетом погрешности.

3.Вычислите мощность тока в лампе. Результаты вычислений занесите в таблицу.

Сила тока

Напряжение

Мощность

Работа

Стоимость

I+ΔI, А

U+ΔU, В

P, Вт

А, Дж

Руб, коп

4.Измерьте время горения лампы а вашем опыте и вычислите работу тока в лампе. Результаты измерений и вычислений занесите в таблицу.

5.Расчитайте стоимость электроэнергии, израсходованной вами во время выполнения лабораторной работы.

6.Сделайте вывод.

Лабораторная работа № 10

Сборка электромагнита и испытание его действия

Цель работы : научиться собирать электромагнит из готовых деталей и изучить принцип его действия; проверить на опыте от чего зависит магнитное действие электромагнита.

Приборы и материалы : лабораторный источник тока, реостат, амперметр, ключ, соединительные провода, магнитная стрелка, детали для сборки электромагнита, железный гвоздь.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Оберегайте приборы от падения. Реостат нельзя полностью выводить из нагрузки, т.к. сопротивление его при этом становится равным нулю!

Тренировочные задания и вопросы

1.Вокруг чего существует электрическое поле?

2.Вокруг чего существует магнитное поле?

3.Как можно изменить магнитное поле катушки с током?

4.Что называют электромагнитом?

5.При замыкании ключа северный

полюс стрелки N повернулся к

ближнему к нему концу катушки.

Какой полюс у этого конца катушки

при замыкании цепи?

6. Как изменится действие

магнитного поля катушки на

стрелку при смещении

ползунка реостата влево? вправо?


Порядок выполнения работы

1. Составьте электрическую цепь из источника питания, катушки, реостата, амперметра и ключа, соединив их последовательно. Нарисуйте схему сборки цепи.

2. Замкните цепь и с помощью магнитной стрелки определите полюсы у катушки. Измерьте расстояние от катушки до стрелки ℓ 1 и силу тока I 1 в катушке. Результаты измерений запишите в таблицу 1

3. Отодвиньте магнитную стрелку вдоль оси катушки на такое расстояние ℓ 2 I 2 в катушке. Результаты измерений также запишите в таблицу 1.

Таблица 1

Катушка

без сердечника

ℓ 1 , см

I 1 , А

ℓ 2 , см

I 2 , А

4. Вставьте железный сердечник в катушку и пронаблюдайте действие электромагнита на стрелку. Измерьте расстояние ℓ 3 от катушки до стрелки и силу тока I 3 в катушке с сердечником. Результаты измерений запишите в таблицу 2.

5.Отодвиньте магнитную стрелку вдоль оси катушки с сердечником на такое расстояние ℓ 4 , на котором действие магнитного поля катушки на магнитную стрелку незначительно. Измерьте это расстояние и силу тока I 4 в катушке. Результаты измерений также запишите в таблицу 2.

Таблица 2

Катушка

с сердечником

ℓ 3 , см

I 3 , А

ℓ 4 , см

I 4 , А

6.Изменяйте с помощью реостата силу тока в цепи и наблюдайте действие

электромагнита на стрелку.

7.Из готовых деталей соберите электромагнит. Катушки соедините между собой последовательно так, чтобы на их концах получились разноименные полюсов. С помощью магнитной стрелки установите расположение полюсов электромагнита. Начертите схему электромагнита и покажите на ней направление тока в его катушках.

8.Сделайте соответствующие выводы.

Лабораторная работа № 11

Изучение электрического двигателя постоянного тока (на модели)

Цель работы : познакомиться на модели электродвигателя постоянного тока с его устройством и работой.

Приборы и материалы : модель электродвигателя, лабораторный источник питания, ключ, соединительные провода.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Не прикасайтесь руками к вращающимся деталям электродвигателя.

Тренировочные задания и вопросы

1.На каком физическом явлении основано действие электрического двигателя?

2.Каковы преимущества электрических двигателей по сравнению с тепловыми?

3.Оъясните, почему вращается рамка с током, помещенная в магнитное поле.

4.Где используется электрические двигатели постоянного тока?

5.Рассмотрите модель электродвигателя. Укажите на рисунке основные его части.





Порядок выполнения работы

1.Соберите электрическую цепь, состоящую из источника тока, модели электродвигателя, ключа и реостата, соединив все последовательно. Начертите схему в тетради.

2. Приведите двигатель во вращение. Если двигатель не работает, найдите причины и устраните их.

3. Измените направление тока в цепи. Наблюдайте за вращением подвижной части электродвигателя. Сделайте вывод.

Лабораторная работа № 12

Измерение фокусного расстояния собирающей линзы. Получение изображений

Цель работы : научиться получать и исследовать различные изображения, даваемые линзой, в зависимости от положения предмета относительно линзы.

Приборы и материалы : собирающая линза, экран, электрическая лампочка, линейка, лабораторный источник питания, ключ, соединительные провода.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Не трогайте линзу руками и не прикладывайте линзы к глазам.

Тренировочные задания и вопросы

1.Что называют: 1)оптическим центром линзы; 2)главной оптической осью; 3)главным фокусом линзы; 4)фокусным расстоянием?

2.Перечертите рисунок в тетрадь, покажите, на нем области тени и полутени.

3.Сравните оптические плотности граничащих сред в случаях, приведенных на рисунке.



4.Постройте изображения, даваемые линзами и охарактеризуйте изображения.




Порядок выполнения работы

1.Определите фокусное расстояние линзы. Для этого при помощи линзы получите на экране четкое изображение окна. Расстояние от линзы до изображения равно фокусному расстоянию. Определите оптическую силу линзы.

2.Поместите горящую электрическую лампочку на расстоянии d, большем, чем двойное фокусное расстояние линзы. Получите четкое изображение лампочки. Измерьте расстояние от линзы до изображения f, размеры лампочки и размеры ее изображения. Запишите результаты в таблицу.

Расстояние от предмета до линзы

Характеристика изображения

Размеры предмета

Размеры изображения

Расстояние от линзы до изображения

Действительное или мнимое

Увеличенное или уменьшенное

Обратное или прямое

d>2F

d=2F

3.Поместите лампочку на расстоянии, равном двойному фокусному, между фокусным и двойным фокусным и меньше фокусного. В каждом случае получите изображение и выполните те же измерения.

4.Для каждого случая постройте ход лучей в линзе.

d < F


F < d < 2 F


d =2F


d > 2 F


5.Вычислите увеличение линзы в каждом случае. Увеличение линзы равно отношению размера изображения H к размеру предмета h:

6.Сделайте соответствующие выводы.

Кровеносные сосуды представляют замкнутую систему разветвленных трубок разного диаметра, входящих в состав большого и малого кругов кровообращения. В этой системе различают: артерии , по которым кровь течёт от сердца к органам и тканям, вены - по ним кровь возвращается в сердце, и комплекс сосудов микроциркуляторного русла, обеспечивающих наряду с транспортной функцией обмен веществ между кровью и окружающими тканями.

Кровеносные сосуды развиваются из мезенхимы. В эмбриогенезе наиболее ранний период характеризуется появлением многочисленных клеточных скоплений мезенхимы в стенке желточного мешка - кровяных островков. Внутри островка образуются кровяные клетки и формируется полость, а расположенные по периферии клетки становятся плоскими, соединяются между собой при помощи клеточных контактов и формируют эндотелиальную выстилку образующейся трубочки. Такие первичные кровеносные трубочки по мере образования соединяются между собой и формируют капиллярную сеть. Окружающие клетки мезенхимы превращаются в перициты, гладкие мышечные клетки и адвентициальные клетки. В теле зародыша кровеносные капил­ляры закладываются из клеток мезенхимы вокруг щелевидных пространств, заполненных тканевой жидкостью. Когда по сосудам усиливается кровоток, эти клетки становятся эндотелиальными, а из окружающей мезенхимы формируются элементы средней и наружной оболочки.

Сосудистая система обладает очень большой пластичностью . Прежде всего, отмечается значительная изменчивость густоты сосудистой сети, так как в зависимости от потребностей органа в питательных веществах и кислороде в широких пределах колеблется количество приносимой ему крови. Изменение скорости кровотока и кровяного давления ведет к образованию новых сосудов и перестройке имеющихся сосудов. Происходит превращение мелкого сосуда в более крупный с характерными особенностями строения его стенки. Наибольшие изменения возникают в сосудистой системе при развитии окольного, или коллатераль­ного, кровообращения.

Артерии и вены построены по единому плану - в их стенках различают три оболочки: внутреннюю (tunica intima), среднюю (tunica media) и наружную (tunica adventicia). Однако степень развития этих оболочек, их толщина и тканевый состав тесно связаны с функцией, выполняемой сосудом и гемодинамическими условиями (высотой кровяного давления и скоростью кровотока), которые в различных отделах сосудистого русла неодинаковы.

Артерии. По строению стенок различают артерии мышеч­ного, мышечно-эластического и эластического типов.

К артериям эластического типа относятся аорта и легочная артерия. В соответствии с высоким гидростатическим давлением (до 200 мм ртутного столба), создаваемым нагнетательной деятельностью желудочков сердца, и большой скоростью кровотока (0,5 - 1 м/с) у этих сосудов резко выражены упругие свойства, которые обеспечивают прочность стенки при ее растяжении и возвращении в исходное положение, а также способствуют превращению пульсирующего кровотока в постоянный непрерывный. Стенка артерий эластического типа отличается значительной толщиной и наличием большого количества эластических элементов в составе всех оболочек.

Внутренняя оболочка состоит из двух слоев - эндотелиального и подэндотелиального. Эндотелиальные клетки, формирующие сплошную внутреннюю выстилку, имеют различную величину и форму, содержат одно или несколько ядер. В их цитоплазме немногочисленные органеллы и много микрофиламентов. Под эндотелием находится базальная мембрана. Подэндотелиальный слой состоит из рыхлой тонковолокнистой соединительной ткани, в составе которой наряду с сетью эластических волокон присутствуют малодифференцированные клетки звездчатой формы, макрофаги, гладкие мышечные клетки. В аморфном веществе этого слоя, имеющем большое значение для питания стенки, со­держится значительное количество гликозаминогликанов. При повреждении стенки и развитии патологического процесса (атеросклерозе) в подэндотелиальном слое накапливаются липиды (холестерин и его эфиры). Клеточные элементы подэндотелиального слоя играют важную роль в регенерации стенки. На границе со средней оболочкой располагается густая сеть эластических волокон.

Средняя оболочка состоит из многочисленных эластических окончатых мембран, между которыми располагаются косо ориентированные пучки гладких мышечных клеток. Через окна (фенестры) мембран осуществляется внутристеночный транспорт веществ, необходимых для питания клеток стенки. Как мембраны, так и клетки гладкой мышечной ткани окружены сетью эластических волокон, формирующих вместе с волокнами внутренней и наружной оболочек единый каркас, обеспечивающий. высокую эластичность стенки.

Наружная оболочка образована соединительной тканью, в которой преобладают пучки коллагеновых волокон, ориентированных продольно. В этой оболочке расположены и ветвятся сосуды, обеспечивающие питание как наружной оболочки, так и наружных зон средней оболочки.

Артерии мышечного типа . К разным по калибру артериям этого типа относится большинство артерий, доставляющих и регулирующих приток крови к различным частям и органам организма (плечевая, бедренная, селезеночная и др.). При микроскопическом исследовании в стенке хорошо различимы элементы всех трех оболочек (рис. 5).

Внутренняя оболочка состоит из трех слоев: эндотелиального, подэндотелиального и внутренней эластической мембраны. Эндотелий имеет вид тонкой пластинки, состоящей из вытянутых вдоль сосуда клеток с овальными, выступающими в просвет ядрами. Подэндотелиальный слой более развит в круп­ных по диаметру артериях и состоит из клеток звездчатой или веретенообразной формы, тонких эластических волокон и аморфного вещества, содержащего гликозаминогликаны. На границе со средней оболочкой лежит внутренняя эластическая мембрана , хорошо заметная на препаратах в виде блестящей, окрашенной эозином в светло-розовый цвет волнистой полоски. Эта мембрана пронизана многочисленными отверстиями, имею­щими значение для транспорта веществ.

Средняя оболочка построена преимущественно из гладкой мышечной ткани, пучки клеток которой идут по спирали, однако при изменении положения артериальной стенки (растяжении) расположение мышечных клеток может изменяться. Сокращение мышечной ткани средней оболочки имеет значение в регулировании притока крови к органам и тканям в соответствии с их потребностями и поддержании кровяного давления. Между пучками клеток мышечной ткани расположена сеть эластических волокон, которые вместе с эластическими волокнами подэндотелиального слоя и наружной оболочки формируют единый эластический каркас, придающий стенке упругость при ее сдавливании. На границе с наружной оболочкой в крупных артериях мышечного типа имеется наружная эластическая мем­брана, состоящая из плотного сплетения продольно ориентированных эластических волокон. В более мелких артериях эта мембрана не выражена.

Наружная оболочка состоит из соединительной ткани, в которой коллагеновые волокна и сети эластических волокон вытянуты в продольном направлении. Между волокнами располагаются клетки, преимущественно фиброциты. В наружной оболочке находятся нервные волокна и мелкие кровеносные сосуды, питающие наружные слои стенки артерии.

Рис. 5. Схема строения стенки артерии (А) и вены (Б) мышечного типа:

1 - внутренняя оболочка; 2 - средняя оболочка; 3 - наружная оболочка; а - эндотелий; б - внутренняя эластическая мембрана; в - ядра клеток гладкой мышечной ткани в средней оболочке; г - ядра клеток соединительной ткани адвентиции; д - сосуды сосудов.

Артерии мышечно-эластического типа по строению стенки занимают промежуточное положение между артериями эластического и мышечного типа. В средней оболочке в равном количестве развиты спирально ориентированная гладкая мышечная ткань, эластические пластины и сеть эластических волокон.

Сосуды микроциркуляторного русла. На месте перехода артериального русла в венозное в органах и тканях сформирована густая сеть мелких прекапиллярных, капиллярных и посткапиллярных сосудов. Этот комплекс мел­ких сосудов, обеспечивающий кровенаполнение органов, транссосудистый обмен и тканевый гомеостаз, объединяют термином микроциркуляторное русло. В его состав входят различные артериолы, капилляры, венулы и артериоло-венулярные анастомозы (рис. 6).

Р
ис.6. Схема сосудов микроциркуляторного русла:

1 - артериола; 2 - венула; 3 - капиллярная сеть; 4 - артериоло-венулярный анастомоз

Артериолы. По мере уменьшения диаметра в артериях мы­шечного типа истончаются все оболочки и они переходят в артериолы - сосуды диаметром менее 100 мкм. Внутренняя оболочка их состоит из эндотелия, расположенного на базальной мембране, и отдельных клеток подэндотелиального слоя. В некоторых артериолах может быть очень тонкая внутренняя эластическая мембрана. В средней оболочке сохраняется один ряд спирально расположенных клеток гладкой мышечной ткани. В стенке конечных артериол, от которых ответвляются капилляры, гладкомышечные клетки не образуют сплошного ряда, а расположены разрозненно. Это прекапиллярные артериолы . Однако в месте ответвления от артериолы капилляр окружен значительным количеством гладкомышечных клеток, которые образуют своеобразный прекапиллярный сфинктер . Вследствие изменения тонуса таких сфинктеров регулируется кровоток в ка­пиллярах соответствующего участка ткани или органа. Между мышечными клетками имеются эластические волокна. Наружная оболочка содержит отдельные адвентициальные клетки и коллагеновые волокна.

Капилляры - важнейшие элементы микроциркуляторного русла, в которых осуществляется обмен газами и различными веществами между кровью и окружающими тканями. В большинстве органов между артериолами и венулами образуются ветвящиеся капиллярные сети , расположенные в рыхлой соединительной ткани. Плотность капиллярной сети в разных органах может быть различной. Чем интенсивнее обмен веществ в органе, тем гуще сеть его капилляров. Наиболее развита сеть капилляров в сером веществе органов нервной системы, в органах внутрен­ней секреции, миокарде сердца, вокруг легочных альвеол. В ске­летных мышцах, сухожилиях, нервных стволах капиллярные сети ориентированы продольно.

Капиллярная сеть постоянно находится в состоянии пере­стройки. В органах и тканях значительное количество капилляров не функционирует. В их сильно уменьшенной полости циркулирует только плазма крови (плазменные капилляры ). Количество открытых капилляров увеличивается при интенсифи­кации работы органа.

Капиллярные сети встречаются и между одноименными сосудами, например венозные капиллярные сети в дольках печени, аденогипофизе, артериальные - в почечных клубочках. Кроме образования разветвленных сетей, капилляры могут иметь форму капиллярной петли (в сосочковом слое дермы) или формировать клубочки (сосудистые клубочки почек).

Капилляры - наиболее узкие сосудистые трубочки. Их калибр в среднем соответствует диаметру эритроцита (7-8 мкм), однако в зависимости от функционального состояния и органной специализации диаметр капилляров может быть различным Узкие капилляры (диаметром 4 – 5 мкм) в миокарде. Особые синусоидные капилляры с широким просветом (30 мкм и более) в дольках печени, селезенке, красном костном мозге, органах внутренней секреции.

Стенка кровеносных капилляров состоит из нескольких струк­турных элементов. Внутреннюю выстилку формирует слой эндотелиальных клеток, расположенных на базальной мембране, в последней содержатся клетки - перициты. Вокруг базальной мембраны располагаются адвентициальные клетки и ретикулярные волокна (рис. 7).

Рис.7. Схема ультраструктурной организации стенки кровеносного капил­ляра с непрерывной эндотелиальной выстилкой:

1 - эндотелиоцит: 2 - базальная мембрана; 3 - перицит; 4 - пиноцитозные микропузырьки; 5 - зона контакта между эндотелиальными клетками (рис. Козлова).

Плоские эндотелиальные клетки вытянуты по длине капилляра и имеют очень тонкие (менее 0,1 мкм) периферические безъядерные участки. Поэтому при световой микроскопии поперечного среза сосуда различима только область расположения ядра толщиной 3-5 мкм. Ядра эндотелиоцитов чаще овальной формы, содержат конденсированный хроматин, сосредоточенный около ядерной оболочки, которая, как правило, имеет неровные контуры. В цитоплазме основная масса органелл расположена в околоядерной области. Внутренняя поверхность эндотелиальных клеток неровная, плазмолемма образует различные по форме а высоте микроворсинки, выступы и клапанообразные структуры. Последние особенно характерны для венозного отдела капилляров. Вдоль внутренней и наружной поверхностей эндотелиоцитов располагаются многочисленные пиноцитозные пузырьки , свидетельствующие об интенсивном поглощении и переносе веществ через цитоплазму этих клеток. Эндотелиальные клетки благодаря способности быстро набухать и затем, отдавая жидкость, уменьшаться по высоте могут изменять величину просвета капилляра, что, в свою очередь, влияет на прохождение через него форменных элементов крови. Кроме того, при электронной микроскопии в цитоплазме выявлены микрофиламенты, обусловливающие сократительные свойства эндотелиоцитов.

Базальная мембрана , расположенная под эндотелием, выявляется при электронной микроскопии и представляет пла­стинку толщиной 30-35 нм, состоящую из сети тонких фибрилл, содержащих коллаген IV типа и аморфного компонента. В последнем наряду с белками содержится гиалуроновая кислота, полимеризованное или деполимеризованное состояние которой обусловливает избирательную проницаемость капилляров. Базальная мембрана обеспечивает также эластичность и прочность капилляров. В расщеплениях базальной мембраны встречаются особые отросчатые клетки - перициты. Они своими отростками охватывают капилляр и, проникая через базальную мембрану, формируют контакты с эндотелиоцитами.

В соответствии с особенностями строения эндотелиальной выстилки и базальной мембраны различают три типа капилляров. Большинство капилляров в органах и тканях принадлежит к первому типу (капилляры общего типа ). Они характеризуются наличием непрерывных эндотелиальной выстилки и базальной мембраны. В этом сплошном слое плазмолеммы соседних эндотелиальных клеток максимально сближены и образуют соединения по типу плотного контакта, который непроницаем для макромолекул. Встречаются и другие виды контактов, когда края соседних клеток налегают друг на друга наподобие черепицы или соединяются зубчатыми поверхностями. По длине капилляров выделяют более узкую (5 - 7 мкм) проксимальную (артериолярную) и более широкую (8 - 10 мкм) дистальную (венулярную) части. В полости проксимальной части гидростатическое давление больше коллоидно-осмотического, создаваемого находящимися в крови белками. В результате жидкость фильтруется за стенку. В дистальной части гидростатическое давление становится меньше коллоидно-осмотического, что обусловливает переход во­ды и растворенных в ней веществ из окружающей тканевой жид­кости в кровь. Однако выходной поток жидкости больше входного, и избыточная жидкость в качестве составной части тканевой жидкости соединительной ткани поступает в лимфатическую систему.

В некоторых органах, в которых интенсивно происходят процессы всасывания и выделения жидкости, а также быстрый транспорт в кровь макромолекулярных веществ, эндотелий капилляров имеет округлые субмикроскопические отверстия диаметром 60- 80 нм или округлые участки, затянутые тонкой диафрагмой (почки, органы внутренней секреции). Это капилляры с фенестрами (лат. fenestrae - окна).

Капилляры третьего типа - синусоидные , характеризуются большим диаметром своего просвета, наличием между эндотелиальными клетками широких щелей и прерывистой базальной мембраной. Капилляры этого типа обнаружены в селезенке, красном костном мозге. Через их стенки проникают не только макромолекулы, но и клетки крови.

Венулы - отводящий отдел микропиркуляторного русла и начальное звено венозного отдела сосудистой системы. В них со­бирается кровь из капиллярного русла. Диаметр их просвета бо­лее широкий, чем в капиллярах (15-50 мкм). В стенке венул, так же как и у капилляров, имеется слой эндотелиальных кле­ток, расположенных на базальной мембране, а также более выраженная наружная соединительнотканная оболочка. В стенках венул, переходящих в мелкие вены, находятся отдельные гладкие мышечные клетки. В посткапиллярных венулах тимуса , лимфатических узлов элдотелиальная выстилка представлена высокими эндотелиальными клетками, способствующими избирательной миграции лимфоцитов при их рециркуляции. В венулах вследствие тонкости их стенки, медленного кровотока я низкого кровяного давления может депонироваться значительное количество крови.

Артериоло-венулярные анастомозы. Во всех органах обнаружены трубочки, по которым кровь из артериол может направляться непосредственно в венулы, минуя капиллярную сеть. Особенно много анастомозов в дерме кожи, в ушной раковине, гребне птиц, где играют определенную роль в терморегуляции.

По строению истинные артериоло-венулярные анастомозы (шунты) характеризуются наличием в стенке значительного количества продольно ориентированных пучков из гладких мышечных клеток, расположенных или в подэндотелиальном слое интимы (рис. 8), или во внутренней зоне средней оболочки. В некоторых анастомозах эти клетки приобретают эпителиоподобный вид. Продольно расположенные мышечные клетки находятся и в наружной оболочке. Встречаются не только простые анастомозы в виде единичных трубочек, но и сложные, состоящие из нескольких ветвей, отходящих от одной артериолы и окруженных общей соединительнотканной капсулой.

Рис.8. Артериоло-венулярный анастомоз:

1 - эндотелий; 2 - продольно расположенные эпителиоидно-мышечные клетки; 3 - циркулярно расположенные мышечные клетки средней оболочки; 4 - наружная оболочка.

При помощи сократительных механизмов анастомозы могут уменьшить или полностью закрыть свой просвет, в результате чего течение крови через них прекращается и кровь поступает в капиллярную сеть. Благодаря этому органы получают кровь в зависимости от потребности, связанной с их работой. Кроме того, высокое давление артериальной крови через анастомозы передается в венозное русло, способствуя этим лучшему пере движению крови в венах. Значительна роль анастомозов в обогащении венозной крови кислородом, а также в регуляции кровообращения при развитии патологических процессов в органах.

Вены - кровеносные сосуды, по которым кровь из органов и тканей течет к сердцу, в правое предсердие. Исключение составляют легочные вены, направляющие кровь, богатую кислородом, из легких в левое предсердие.

Стенка вен, так же как и стенка артерий, состоит из трех оболочек: внутренней, средней и наружной. Однако конкретное гистологическое строение этих оболочек в различных венах очень разнообразно, что связано с различием их функционирования и местными (в соответствии с локализацией вены) условиями кровообращения. Большинство вен одинакового диаметра с одноименными артериями имеет более тонкую стенку и более широкий просвет.

В соответствии с гемодинамическими условиями - низким кровяным давлением (15-20 мм рт. ст.) и незначительной скоростью кровотока (около 10 мм/с) - в стенке вен сравнительно слабо развиты эластические элементы и меньшее количество мышечной ткани в средней оболочке. Эти признаки обусловливают возможность изменения конфигурации вен: при малом кровена­полнении стенки вен становятся спавшимися, а при затруднении оттока крови (например, вследствие закупорки) легко происхо­дят растяжение стенки и расширение вен.

Существенное значение в гемодинамике венозных сосудов имеют клапаны, расположенные таким образом, что, пропуская кровь по направлению к сердцу, они преграждают путь ее обратному течению. Число клапанов больше в тех венах, в которых кровь течет в направлении, обратном действию силы тяжести (например, в венах конечностей).

По степени развития в стенке мышечных элементов различают вены безмышечного и мышечного типов.

Вены безмышечного типа. К характерным венам данного типа относят вены костей, центральные вены печеночных долек и трабекулярные вены селезенки. Стенка этих вен состоит только из слоя эндотелиальных клеток, расположенных на базальной мембране, и наружного тонкого слоя волокнистой соединительной ткани С участием последней стенка плотно срастается с окружающими тканями, вследствие чего эти вены пассивны в продвижении по ним крови и не спадаются. Безмышечные вены мозговых оболочек и сетчатки глаза, наполняясь кровью, способ­ны легко растягиваться, но в то же время кровь под действием собственной силы тяжести легко оттекает в более крупные венозные стволы.

Вены мышечного типа. Стенка этих вен, подобно стенке артерий, состоит из трех оболочек, однако границы между ними ме­нее отчетливы. Толщина мышечной оболочки в стенке вен разной локализации неодинаковая, что зависит от того, движется кровь в них под действием силы тяжести или против нее. На основании этого вены мышечного типа подразделяют на вены со слабым, средним и сильным развитием мышечных элементов. К венам первой разновидности относят горизонтально расположенные вены верхней части туловища организма и вены пищеваритель­ного тракта. Стенки таких вен тонкие, в их средней оболочке гладкая мышечная ткань не образует сплошного слоя, а расположена пучками, между которыми имеются прослойки рыхлой соединительной ткани.

К венам с сильным развитием мышечных элементов относят крупные вены конечностей животных, по которым кровь течет вверх, против силы тяжести (бедренная, плечевая и др.). Для них характерны продольно расположенные небольшие пучки клеток гладкой мышечной ткани в подэндотелиальном слое интимы и хорошо развитые пучки этой ткани в наружной оболочке. Сокращение гладкой мышечной ткани наружной и внутренней оболо­чек приводит к образованию поперечных складок стенки вен, что препятствует обратному кровотоку.

В средней оболочке содержатся циркулярно расположенные пучки клеток гладкой мышечной ткани, сокращения которых способствуют продвижению крови к сердцу. В венах конечностей имеются клапаны, представляющие собой тонкие складки, обра­зованные эндотелием и подэндотелиальным слоем. Основу клапана составляет волокнистая соединительная ткань, которая в основании створок клапана может содержать некоторое количе­ство клеток гладкой мышечной ткани. Клапаны также препятствуют обратному току венозной крови. Для движения крови в венах существенное значение имеют присасывающее действие грудной клетки во время вдоха и сокращение скелетной мышечной ткани, окружающей венозные сосуды.

Васкуляризация и иннервация кровеносных сосудов. Питание стенки крупных и средних артериальных сосудов осуществляется как извне - через сосуды сосудов (vasa vasorum), так и изнутри - за счет крови, протекающей внутри сосуда. Сосуды сосудов - это ветви тонких околососудистых артерий, проходящих в окружающей соединительной ткани. В наружной оболочке стенки сосуда ветвятся артериальные веточки, в среднюю проникают капилляры, кровь из которых собирается в венозные сосуды сосудов. Интима и внутренняя зона средней оболочки артерий не имеют капилляров и питаются со стороны просвета сосудов. В связи со значительно меньшей силой пульсовой волны, меньшей толщиной средней оболочки, отсутствием внутренней эластической мембраны механизм питания вены со стороны полости не имеет особого значения. В венах сосуды со­судов снабжают артериальной кровью все три оболочки.

Сужение и расширение кровеносных сосудов, поддержание сосудистого тонуса происходят главным образом под влиянием импульсов, поступающих из сосудодвигательного центра. Импульсы от центра передаются к клеткам боковых рогов спинного мозга, откуда к сосудам поступают по симпатическим нервным волокнам. Конечные разветвления симпатических волокон, в составе которых находятся аксоны нервных клеток симпатических ганглиев, образуют на клетках гладкой мышечной ткани двигательные нервные окончания. Эфферентная симпатическая иннерва­ция сосудистой стенки обусловливает основной сосудосуживающий эффект. Вопрос о природе вазодилататоров окончательно не решен.

Установлено, что сосудорасширяющими в отношении сосудов головы являются парасимпатические нервные волокна.

Во всех трех оболочках стенки сосудов концевые разветвле­ния дендритов нервных клеток, преимущественно спинальных ганглиев, образуют многочисленные чувствительные нервные окончания. В адвентиции и околососудистой рыхлой соединитель­ной ткани среди многообразных по форме свободных окончаний встречаются и инкапсулированные тельца. Особенно важное физиологическое значение имеют специализированные интерорецепторы, воспринимающие изменения давления крови и ее химического состава, сосредоточенные в стенке дуги аорты и в области разветвления сонной артерии на внутреннюю и наружную - аортальная и каротидная рефлексогенные зоны. Установлено, что помимо этих зон существует достаточное количество других сосудистых территорий, чувствительных к изменению давления и химического состава крови (баро- и хеморецепторы). От рецепторов всех специализированных территорий импульсы по центростремительным нервам достигают сосудодвигательного центра продолговатого мозга, вызывая соответствующую компенсаторную нервнорефлекторную реакцию.